¹⁹⁸Tl ε decay (1.87 h) 1971Pa06,1971Be09,1970Du10

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Huang Xiaolong and Kang Mengxiao	NDS 133, 221 (2016)	1-Dec-2015

Parent: ¹⁹⁸Tl: E=543.5 4; J^{π}=7⁺; T_{1/2}=1.87 h 3; Q(ε)=3460 80; % ε +% β ⁺ decay=55.9 23 Sources produced by ¹⁹⁷Au(α ,3n) (1971Be09,1956Fi23,1954Mi16) and ¹⁹⁸Hg(d,2n) (1971Pa06). 1971Pa06: measure E γ , I γ , X γ -delay, $\gamma\gamma$ coin, $\gamma\gamma(\theta)$ with Ge(Li)-Ge(Li), Ge(Li)-NaI(Tl), and Ge(Li). 1971Be09: measure E γ , I γ , I(ce), $\gamma\gamma(\theta)$, γ -ce delay, x- γ delay with NaI(Tl)-Ge(Li), Ge(Li)-Ge(Li), and Ge(Li). 1970Du10: measure E γ , I γ , ce- γ delay, $\gamma\gamma$ coin, ce γ coin, with Ge(Li) and Si(Li). Others: 1954Pa19, 1957An55, 1960Ju01, 1968Pe13.

¹⁹⁸Hg Levels

E(level) [†]	J ^π ‡	T _{1/2}	Comments
0.0	0^{+}		
411.80 20	2+		
1048.5 <i>3</i>	4+		
1635.7 4	5-	62 ps 11	$T_{1/2}$: γ ce-delay measurement (1971Be09). Other: $\leq 100 \text{ ps}$ (1970Du10,1970To14).
1683.4 4	7-	6.9 ns 2	$T_{1/2}$: From $\gamma ce(t)$ measurements (1970Du10,1970To14). Others: 7.4 ns 4 (1971Be09), 6.6 ns 5 (1971Pa06).
1815.8 5	6+		
1909.7 4	6-		
1910.6 5	9-		
2059.1 5	6-		
2125.4 4	$6^{-},7^{-}$		
2202.6 5	6-,7-		
2515.9 5			

[†] From decay scheme and $E\gamma$'s by using least-squares fit to data.

[‡] From Adopted Levels.

E(decay)	E(level)	I β^+ †‡	$\mathrm{I}\varepsilon^{\dagger\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\ddagger}$	Comments
$(1.49 \times 10^3 8)$	2515.9	0.0014 13	2.5 3	7.22 8	2.5 3	av E β =231 37; ε K=0.8015 7; ε L=0.1495 8; ε M+=0.0485 3
$(1.80 \times 10^3 8)$	2202.6	0.019 9	4.4 6	7.15 8	4.4 6	av Eβ=370 36; εK=0.8012 10; εL=0.1469 7; εM+=0.04750 25
$(1.88 \times 10^3 8)$	2125.4	0.049 19	7.9 9	6.94 7	7.9 9	av Eβ=404 36; εK=0.8003 14; εL=0.1462 8; εM+=0.0473 3
$(1.94 \times 10^3 8)$	2059.1	0.017 6	2.1 3	7.54 8	2.1 3	av Eβ=433 35; εK=0.7992 18; εL=0.1457 8; εM+=0.0471 3
$(2.09 \times 10^3 8)$	1910.6	0.025 9	1.8 4	7.68 11	1.8 4	av Eβ=498 35; εK=0.795 3; εL=0.1442 9; εM+=0.0466 3
$(2.09 \times 10^3 8)$	1909.7	0.12 4	8.3 17	7.01 10	8.4 17	av Eβ=498 35; εK=0.795 3; εL=0.1442 9; εM+=0.0466 3
$(2.19 \times 10^3 8)$	1815.8	0.021 6	1.14 17	7.91 8	1.16 <i>17</i>	av Eβ=539 35; εK=0.792 4; εL=0.1432 10; εM+=0.0462 4
$(2.32 \times 10^3 8)$	1683.4	0.7 4	24 15	6.6 <i>3</i>	25 15	av Eβ=597 35; εK=0.786 5; εL=0.1416 11; εM+=0.0457 4
$(2.37 \times 10^3 8)$	1635.7	0.019 19	2.5 25	8.9 ¹ <i>u</i> 5	2.5 25	av Eβ=624 34; εK=0.7915 8; εL=0.1516 8; εM+=0.0494 3

 ε, β^+ radiations

Continued on next page (footnotes at end of table)

 $^{198}\text{Tl}\ \varepsilon$ decay (1.87 h) 1971Pa06,1971Be09,1970Du10 (continued)

ε, β^+ radiations (continued)

[†] From intensity I(γ +ce) imbalance at each level, and no ε + β ⁺ to g.s., 412-, and 1048-keV states assumed. Values are from 1971Pa06. [‡] Absolute intensity per 100 decays.

From ENSDF

$\gamma(^{198}\text{Hg})$

Iγ normalization: From I(γ+ce)(587.2γ+767.3γ)=55.9% 23 (no ε+β⁺ to g.s., 412-, and 1048-keV states assumed). α (K)exp=ce(K)(1970Du10)/Iγ(1971Pa06) normalized to α (K)(282.8γ, ¹⁹⁸Tl IT decay (1.87 h))=0.378 (M1 theory). Other α (K)exp (1971Be09,1968Pe13) normalized to α (K)(411.8γ)=0.0301 (E2 theory).

$E_{\gamma}^{\#}$	$I_{\gamma}^{\textcircled{0}b}$	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. <mark>&</mark>	$\delta^{\ddagger \&}$	α^{\dagger}	Comments
47.74 5	0.47 15	1683.4	7-	1635.7 5-	E2		171	α(L)=127.8 I9; α(M)=33.3 5 α(N)=8.23 I3; α(O)=1.355 2I; α(P)=0.001526 23 B(E1)(W.u.)=0.035 $ E_{\gamma}: Deduced from average of L- and M-subshell energies (1957An55). I_{\gamma}: From 1971Pa06. Other: 0.7 I (1971Be09). Mult.: From L1:L2:L3=2.5 8:100:98 8, M2:M3=1.0 I (1957An55), α(L)exp≈120 (1971Be09).$
149.3 <i>3</i> ^x 194.6 <i>3</i>	0.29 <i>10</i> 1.46 <i>30</i>	2059.1	6-	1909.7 6-	M1(+E2)	0.71 +36-33	0.94 16	α (K)=0.71 <i>17</i> ; α (L)=0.172 <i>6</i> ; α (M)=0.0416 <i>22</i> α (N)=0.0104 <i>6</i> ; α (O)=0.00189 <i>5</i> ; α (P)=0.000100 <i>25</i> α (K)exp=0.74 <i>17</i> .
215.6 3	2.4 4	2125.4	6 ⁻ ,7 ⁻	1909.7 6-	M1(+E2)	0.42 +30-42	0.81 12	$\alpha(K)=0.65\ 12;\ \alpha(L)=0.1232\ 19;\ \alpha(M)=0.0291\ 7$ $\alpha(N)=0.00729\ 15;\ \alpha(O)=0.001357\ 22;\ \alpha(P)=9.1\times10^{-5}\ 17$ $\alpha(K)=0.07\ 12.$
226.2 3	10.2 15	1909.7	6-	1683.4 7-	M1(+E2)	0.50 +29-38	0.68 10	$\alpha(K)=0.54\ 10;\ \alpha(L)=0.1063\ 23;\ \alpha(M)=0.0252\ 4$ $\alpha(N)=0.00632\ 10;\ \alpha(O)=0.00117\ 3;\ \alpha(P)=7.6\times10^{-5}\ 14$ $\alpha(K)=n=0\ 56\ 10$
227.5 2	2.7 5	1910.6	9-	1683.4 7-	E2		0.253	$ α(K)=0.1239 I8; α(L)=0.0972 I4; α(M)=0.0250 4 α(N)=0.00621 9; α(O)=0.001055 I6; α(P)=1.557×10-5 22 Mult.: From Adopted Gammas. E_{\gamma}: May depopulate 9- 1910.8 level as in 198Pt(α,4nγ).$
274.0 3	2.9 4	1909.7	6-	1635.7 5-	M1+E2	-0.9 +3-5	0.32 7	$\alpha(K)=0.25$ 7; $\alpha(L)=0.056$ 4; $\alpha(M)=0.0135$ 7 $\alpha(N)=0.00337$ 17; $\alpha(O)=0.00061$ 4; $\alpha(P)=3.5\times10^{-5}$ 9 δ : From Adopted Gammas. $\alpha(K)\exp=0.48$ 9.
292.7 5 375.9 6 390.4 3	0.40 <i>15</i> 1.47 <i>30</i> 3.2 <i>4</i>	2202.6 2059.1 2515.9	6 ⁻ ,7 ⁻ 6 ⁻	1909.7 6 ⁻ 1683.4 7 ⁻ 2125.4 6 ⁻ ,7 ⁻				
411.8 2 ^x 422.2 4	109 <i>10</i> 1.7 <i>3</i>	411.80	2+	0.0 0+	E2 ^{<i>a</i>}		0.0439	α (K)=0.0300 5; α (L)=0.01055 15; α (M)=0.00263 4 α (N)=0.000655 10; α (O)=0.0001152 17; α (P)=3.95×10 ⁻⁶ 6
423.3 <i>4</i> 441.8 <i>3</i>	2.06 <i>30</i> 4.2 <i>6</i>	2059.1 2125.4	6 ⁻ 6 ⁻ ,7 ⁻	1635.7 5 ⁻ 1683.4 7 ⁻	M1		0.1272	α (K)=0.1047 <i>15</i> ; α (L)=0.01730 <i>25</i> ; α (M)=0.00402 <i>6</i> α (N)=0.001007 <i>15</i> ; α (O)=0.000191 <i>3</i> ; α (P)=1.467×10 ⁻⁵ <i>21</i> α (K)exp=0.12 <i>2</i> .

¹⁹⁸ Tl ε decay (1.87 h) 1971Pa06,1971Be09,1970Du10 (continued)								
γ ⁽¹⁹⁸ Hg) (continued)								
${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{@b}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.&	α^{\dagger}	Comments
489.6 <i>3</i> 519.2 <i>3</i>	8.6 <i>9</i> 6.8 <i>8</i>	2125.4 2202.6	6 ⁻ ,7 ⁻ 6 ⁻ ,7 ⁻	1635.7 1683.4	5 ⁻ 7 ⁻	M1	0.0830	α (K)=0.0684 <i>10</i> ; α (L)=0.01124 <i>16</i> ; α (M)=0.00261 <i>4</i> α (N)=0.000654 <i>10</i> ; α (O)=0.0001239 <i>18</i> ; α (P)=9.55×10 ⁻⁶ <i>14</i> α (K)exp=0.076 <i>13</i> .
x531.6 5 x541.0 4 567 0 5	1.0 2 1.5 2 0.40 15	2202.6	6- 7-	1635 7	5-			
587.2 2	100	1635.7	5-	1048.5	4 ⁺	E1	0.00638	α (K)=0.00531 8; α (L)=0.000825 12; α (M)=0.000190 3 α (N)=4.74×10 ⁻⁵ 7; α (O)=8.84×10 ⁻⁶ 13; α (P)=6.30×10 ⁻⁷ 9 α (K)exp=0.0057 7 (1971Be09), \approx 0.0048 (1968Pe13).
606.0 10	0.52 20	2515.9		1909.7	6-			((-),-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-
636.7 2	109 <i>10</i>	1048.5	4+	411.80	2+	E2	0.01540	α (K)=0.01172 <i>17</i> ; α (L)=0.00280 <i>4</i> ; α (M)=0.000677 <i>10</i> α (N)=0.0001690 <i>24</i> ; α (O)=3.06×10 ⁻⁵ <i>5</i> ; α (P)=1.555×10 ⁻⁶ <i>22</i> α (K)exp=0.010 <i>3</i> (1971Be09), ≈0.0092 (1968Pe13).
^x 698.0 4	1.47 20							
^x 744.2 5	0.60 25							
767.3 3	2.13 30	1815.8	6+	1048.5	4+			
832.9 4 x898.5 4 x1050.2 ^c 5 x1281.5 5 x1392.0 4	0.86 <i>15</i> 1.61 <i>25</i> 0.48 <i>20</i> 0.70 <i>25</i> 0.74 <i>20</i>	2515.9		1683.4	7-			

[†] Additional information 1. [‡] If No value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

[#] From 1971Pa06, except as noted.

[@] Relative intensities normalized to $I\gamma(587.2\gamma)=100$. Values are from 1971Pa06. Others: 1970Du10, 1971Be09.

^{*a*} From α (K)exp, except as noted. ^{*a*} From α (K)exp, except as noted. ^{*a*} From ce data in ¹⁹⁸Au β^- decay. ^{*b*} For absolute intensity per 100 decays, multiply by 0.544 22.

^c Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

From ENSDF

¹⁹⁸Tl ε decay (1.87 h) 1971Pa06,1971Be09,1970Du10

