¹⁹⁸Au β⁻ decay (2.6941 d) **1999He10,1991BaZS,1980Iw03**

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Huang Xiaolong and Kang Mengxiao	NDS 133, 221 (2016)	1-Dec-2015

Parent: ¹⁹⁸Au: E=0.0; $J^{\pi}=2^{-}$; $T_{1/2}=2.6941$ d 2; $Q(\beta^{-})=1372.9$ 5; $\%\beta^{-}$ decay=100.0

Sources produced by ¹⁹⁷Au(n,γ) (1980Da16,1981Ch35), ¹⁹⁷Au(d,p) (1973Pa08,1980Ba14,1987Lo07), ¹⁹⁷Au(¹⁴N,¹³N) (1980Ni06), ¹⁹⁶Pt(α,np) (1980SaZY,1975Ma30), ¹⁹⁸Pt(d,2n) (1975Ma30), and ¹⁹⁸Pt(p,n) (1949St17).

1999He10: compiled γ energies; deduced recommended γ calibration standards.

1994HeZZ: a consistent set of γ -ray energies is recommended for use in the energy calibration of γ -ray detectors.

1991BaZS: recommend x- and γ -ray standards for detector calibration.

1980De40: measure $E\gamma$ with double-crystal transmission instruments.

1980Iw03: measure $E\gamma$, $I\gamma$ with Ge(Li).

1973Di15: measure $\gamma\gamma(\theta,H)$.

1992Ha02: report relative and absolute γ -ray intensities.

¹⁹⁸Hg Levels

 $\gamma\gamma(\theta)$: 1974Ka18, 1973Di15, 1953Sc23, 1953Sc19, 1964Ke02, 1964Sa11, 1966Uh01, 1967Ko13, 1968Mu02, 1969Za02, 1972Ve03, 1974Ka18, and ¹⁹⁸Tl ε decay.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.0	0^{+}	stable	
411.80250 17	2+	23.15 ps 28	g=0.487 7 (1984Ha12). Other g: +0.55 11 (1964Ko15,1973Di15,1974Ka18) $\gamma\gamma(\theta,H)$
			external H=57.15 kG; +0.36 to +0.40 (1964Ke02,1973Ra35,1974Do01).
1087.6874 5	2+	40.4 ps 5	

[†] From decay scheme and $E\gamma'$ s by using least-squares fit to $E\gamma$.

[‡] From Adopted Levels.

β^- radiations

Others: 1948Sa36, 1949Dz20, 1949La06, 1949Le07, 1960St14, 1961Bu18. For 961β transition calculation: 1970Bo38, 1970Sm08, 1973Bo01, 1974Kr23, 1972Sc43.

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
(285.2 5)	1087.6874	0.986 <i>6</i>	7.602 4	av $E\beta$ =79.53 <i>16</i> $E\beta$ measurements: 290 <i>15</i> (1951Br52). Other: 1951Ca24. For (285 β)(676 γ ,1087 γ)-coin, see 1951Ca24. From 676 γ (β t) 1970Pr10 deduced AL components in 285 β transition
(961.1 5)	411.80250	98.990 9	7.3687 8	av Eβ=314.78 <i>19</i> Eβ measurements: 959.0 <i>25</i> (1954E104), 960 <i>2</i> (1956Po28), 962 <i>1</i> (1961De03), 964 <i>3</i> (1961De03), 960 <i>3</i> (1962Ha25), 957 <i>5</i> (1962Sh08), 959 <i>2</i> (1963Le11), 965 <i>2</i> (1964Le09), 959.4 <i>5</i> (1965Be24), 960.5 <i>8</i> (1965Ke04), 961.0 <i>12</i> (1965Pa08), 960 <i>2</i> (1966Pa01), 963 <i>4</i> (1967VaZZ), 966 <i>1</i> (1972Na22). Others: 1959Wa17, 1960De17, 1964B110, 1969KrZX. β-shape factor depends on Fermi function and screening correction used. For β-shape factor (961β) which leads to α (K)exp (412 γ) in agreement with E2 theory(=0.0302), see 1965Ke04, 1965Pa08, 1972Na22. Average Eβ: 317 <i>15</i> (1956Sh37), 287 <i>20</i> (1964Le16). Longitudinal β polarization, see 1957Ca06, 1958Al97, 1958Be80, 1958Ge34, 1958He38, 1960Al30, 1960Sp06, 1960Sp10, 1961Av01, 1961So01, 1961Sp09,

Continued on next page (footnotes at end of table)

$^{198}\mathrm{Au}\,\beta^-$ decay (2.6941 d) 1999He10,1991BaZS,1980Iw03 (continued)

β^{-} radiations (continued)

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
				1961Ul01, 1964Va13, 1966Va06.
				1960Si01 measure β transverse pol via 961 β (412 γ) cascade.
				1974Ku16 measure internal, external bremsstrahlung spectra (energy, yield, polarization) associated with 961 β decay.
				1970Pr10 measure $412\gamma(\theta,t)$ with pol ¹⁹⁸ Au source; deduced ΔJ components in 961 β transition. See energy dependence of $\beta\gamma(\theta)$, 1962Pe12, 1964Th08, 1965De18, 1967Ra28.
				961β(Circularly Polarized(CP) γ)(θ) see 1957Be58, 1958Bo72, 1958Bo90, 1960St14, 1961De05, 1962Lo03, 1973Ha08.
1371 4	0.0	0.025 5	12.28 ¹ <i>u</i> 9	av E β =467.37 <i>19</i> E β =1371 <i>4</i> , I β =0.025% <i>5</i> (1955E111) (first unique forbidden(1U) shape factor applied).

[†] From intensity imbalance at each level and $I\beta(exp)$ to g.s. [‡] Absolute intensity per 100 decays.

¹⁹⁸Au β⁻ decay (2.6941 d) **1999He10,1991BaZS,1980Iw03** (continued)

 $\gamma(^{198}\text{Hg})$

Iγ normalization: From I(γ+ce)(to g.s.)=99.975% (Iβ(to g.s.)=0.025% 5 (1955E111)). Other: 0.9557 47 (1991BaZS).

 γ absolute intensity ratios: $I\gamma(411\gamma)$: $I\gamma(676\gamma)$: $I\gamma(1088\gamma)$ = 0.9556 65: 0.00805 9: 0.001595 26 (1992Ha02).

I(Kα x-ray)/Iγ(411.8γ)=0.0229 5, I(Kβ x-ray)/Iγ(411.8γ)=0.00635 *15* (1975Ca15); I(K x-ray) value is consistent with decay scheme. Others: 1949St17, 1949Sa18, 1949Si19, 1949Dz20, 1950Hi56, 1950Pr63, 1951Hu18, 1951Ca06, 1952Fa14, 1952Hu01, 1952Mu45, 1955Bi24, 1956Co28, 1958Ba33, 1958Ka01, 1958Re22, 1960De17, 1960Be11, 1960De15, 1961Hu12, 1961Ha11, 1961Wo02, 1965Wa13, 1968Bo38, 1969Sa31. Branching Iγ(1087γ)/Iγ(676γ): 0.22 2 (1968De30), 0.20 2 (1954El04), 0.23 2 (1955Dz41), 0.23 5 (1951Ca24), 0.22 2 (1971Pa06, ¹⁹⁸Tl ε decay).

x-ray intensities

E, KeV	Radia	tion I	(expt) ^a	I (expt) ^b	I (expt) ^c
8.722	Hg L'	x-ray		0.027 3	0.025 3
9.980	Hg L α	x-ray		0.592 17	0.532 25
10.467	Hg Lv	x-ray		0.0105 15	0.0086 5
11.92	Hg L eta	x-ray		0.643 19	0.555 31
13.92	Hg Lγ	x-ray		0.124 5	0.104 8
68.89	Hg K α_2	x-ray	0.813	10 0.816 2	0.842 24
70.82	Hg K α_1	x-ray	1.374	17 1.41 4	1.44 4
80.12	Hg K' β	1 x-ray	0.460 7	0.485 12	0.504 4
82.78	Hg K' β	2 x-ray	0.135 3	0.137 7	0.137 4

a Intensities per 100 parent decays. Values from 2010Mo06. b Intensities per 100 parent decays. Values from 1989Ch45. c Calculated values.

Recommended x-ray intensity values 1991BaZS

E, keV	Radiation	Intensity ^a
68.89-70.82	Hg K $lpha$ x-ray	2.19 <i>8</i>
80.12-82.78	Hg K eta x-ray	0.61 <i>3</i>
68.89-82.78	Hg K x-ray	2.80 <i>1</i> 0

a Intensities per 100 parent decays.

S

From ENSDF

 $\gamma(^{198}\text{Hg})$ (continued)

[†] From 2000He14 based on measurements of 1980De40. [‡] Relative intensities normalized to $I\gamma(411.8\gamma)=100$. Values are from weighted average of 2010Mo06, 1989Ch45 and 1980Iw03. Other measurements: 1951Ca24, 1951Hu18, 1954El04, 1954Ma19, 1955Dz41, 1956Vo20, 1959Wa17, 1965Ke04, 1968De30, 1971Pa06.

[#] From $\alpha(K)$ exp measurements.

^(a) For absolute intensity per 100 decays, multiply by 0.9562 6. [&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

