Adopted Levels, Gammas

History									
	Туре		Author		Citation	Literature Cutoff Date			
	Full Evalu	lation Huang	Xiaolong a	and Kang Mengxiao	NDS 133, 221 (2016)	1-Dec-2015			
$Q(\beta^{-}) = -390 \times 10^{1}$ For systematic pro-	3; S(n)=77	$75 \times 10^1 \ 3$; S(p)= odd-odd Bi ison	191×10 ¹ 3 ners, see 19	$P; Q(\alpha) = 514 \times 10^1 \ 3$ 972Ha73.	2012Wa38				
				¹⁹⁸ Bi Leve	els				
				Cross Reference (X	REF) Flags				
		A B C	¹⁹⁸ Bi I' ²⁰² At a ²⁰² At a	T decay (7.7 s) D e decay (184 s) E e decay (182 s) F)			
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF		Comme	nts			
0.0	(2+,3+)	10.3 [#] min 3	ABCD	$\%\varepsilon + \%\beta^+ = 100$					
0.0+x	7+	11.6 [#] min 3	A CDEF	$ \begin{split} & \mathscr{H} = \mathcal{H}^{\beta+1} : \text{ no } \alpha \text{ decay observed.} \\ & \text{configuration: } \pi(h_{9/2}^{+1}) \otimes \nu(f_{5/2}^{-1}) \ (2014Pa53). \\ & \text{T}_{1/2} : \text{ Other: } 11.85 \text{ m } 18 \ (1968Ha37). \\ & \mathscr{H} = \mathcal{H}^{\beta+1} = 100 \ (1992Hu04) \\ & \text{Additional information } 1. \\ & \text{This level decays by } \varepsilon + \beta^+ \text{ decay and no } \gamma \text{ transition from this level is known.} \end{split} $					
164.0 <i>10</i> 248.5+x <i>5</i>	10-	7.7 s 5	B A DE	J ^{<i>n</i>} : 248.5 γ E3 from 10 ⁻ . configuration: $\pi(h_{9/2}^{+1}) \otimes \nu(f_{5/2}^{-1})$ (2014Pa53). %IT=100 E(level): From ¹⁹⁸ Bi IT decay (7.7 s). T _{1/2} : From $\gamma(t)$ in ¹⁹⁸ Bi IT decay (1972Ha73). configuration: $\pi(h_{1}^{+1}) \otimes \nu(f_{1}^{-1})$ (2014Pa53)					
303.0 <i>15</i> 874.3+x <i>5</i> 1224.1+x <i>6</i> 1239.1+x <i>6</i> 1547.0+x <i>6</i> 1662.0+x <i>6</i> 1707.4+x <i>6</i> 1707.4+x <i>6</i> 1768.5+x <i>6</i> 1822.8+x <i>6</i> 1877.7+x <i>6</i>	11- 12- 11- 12- 13- 13- 14- 14- 15+	8.0 ns <i>36</i>	B E E E E E E E E	configuration: $\pi(h_9)$ T _{1/2} : From $\gamma(t)$ in configuration: $\pi(h^+)$	$^{1}_{2})\otimes_{V}(i^{-2}_{13/2}p^{-1}_{3/2})$ (2014Pa53 1996Zh23.	3).			
2223.1+ x^{0} 2289.1+ x^{2} <i>12</i> 2595.5+ $x^{\&}$ <i>7</i> 2723.9+ x^{a} <i>6</i> 2837.7+ $x^{\&}$ <i>7</i> 2853.7+ x <i>6</i> 3132.0+ $x^{\&}$ <i>7</i> 3203.6+ x^{8} <i>8</i> 3232.8+ x <i>6</i> 3300.6+ x^{a} <i>6</i> 3428.9+ $x^{\&}$ <i>7</i> 3451.9+ x^{8} <i>8</i>	$ \begin{array}{c} 16\\ (16^{+})\\ 17^{-}\\ 17^{+}\\ (18^{-})\\ 17^{+}\\ (19^{-})\\ 18^{+}\\ 18^{-}\\ 18^{+}\\ (20^{-})\\ \end{array} $		EF EF EF E E E E E E E E E E	configuration: $\pi(n_{9})$	$(2)^{\otimes \nu(1_{13/2}^{-1}_{5/2})}$.).			

Adopted Levels, Gammas (continued)

E(level) [†]	Jπ‡	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	J ^{π‡}	XREF
3635.4+x [@] 8	19+	E	4192.2+x [@] 10	(21^{+})	EF	4845.4+x [@] 11	(23 ⁺)	E
3746.6+x ^{&} 8	(21 ⁻)	EF	4339.3+x ^{&} 8	(23 ⁻)	EF	4856.3+x ^{&} 9	(25 ⁻)	Е
3763.1+x ^a 7	19+	Е	4384.7+x ^{<i>a</i>} 8	(21^{+})	EF	5271.9+x [@] 11	(24 ⁺)	EF
3966.0+x [@] 8	20^{+}	Е	4482.5+x [@] 10	(22^{+})	EF	5767.4+x [@] 12	(25 ⁺)	EF
4064.9+x ^a 7	(20^{+})	EF	4627.1+x ^{&} 9	(24 ⁻)	EF	5970.9+x [@] 12	(26 ⁺)	EF
4126.4+x ^{&} 8	(22 ⁻)	Е	4645.9+x ^a 9	(22^{+})	EF	6486.0+x [@] 13	(27^{+})	EF
4157.6+x 7		E	4661.7+x <i>12</i>		E			

¹⁹⁸Bi Levels (continued)

[†] From $E\gamma$ by using least-squares fit, except as noted.

[‡] From $\varepsilon + \beta^+$ decay and systematics (1992Hu04) and $\gamma(\theta)$ from ¹⁸⁷Re(¹⁶O,5n γ) (2014Pa53), and magnetic-dipole band (2000Zw02).

[#] From ce(t) in 202 At α decay (182 s) (1992Hu04).

^(a) Band(A): $\Delta J=1$ band 1, based on 19⁺. Proposed configuration= $\pi(h_{9/2}^{+1})\otimes\nu(i_{13/2}^{-2}(p_{3/2}f_{5/2})^{-3})$ for lower members of the band and $\pi(h_{9/2}^{+1})\otimes\nu(i_{13/2}^{-4}(p_{3/2}f_{5/2})^{-3})$ after the back-bending (2014Pa53); interpreted as a magnetic-dipole rotational (δ) band.

& Band(B): $\Delta J=1$ band 2, based on 17⁻. Proposed configuration= $\pi(h_{9/2}^{+1}) \otimes v(i_{13/2}^{-3})$ for lower members of the band and $\pi(h_{9/2}^{+1}) \otimes v(i_{13/2}^{-3} p_{3/2}^{-2})$ after the back-bending (2014Pa53); interpreted as a magnetic-dipole rotational (δ) band. Evaluator's note: proposed configuration after the back-bend seems questionable since a pair of $p_{3/2}$ neutrons is unlikely to produce such an upbend with a gain in alignment; a back-bend is generally caused by an intruder (high-spin) orbital.

^{*a*} Band(C): $\Delta J=1$ band 3, based on 16⁺. Proposed tentative configuration= $\pi(h_{9/2}^{+2}i_{13/2}^{+1}s_{1/2}^{-2})\otimes \nu(i_{13/2}^{-1})$.

E _i (level)	\mathbf{J}_i^{π}	Ε _γ &	$I_{\gamma}^{\&d}$	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. ^a	α ^e	Comments
164.0		164 ^c 1	100	0.0	$(2^+, 3^+)$			
248.5+x	10-	248.5 ^b 5	100	0.0+x	7+	E3 ^b	1.54 3	B(E3)(W.u.)=0.00046 <i>3</i> B(E3)(W.u.)=(2.9-9.1)×10 ⁻⁴ for heavier Bi IT decays (1972Ha73).
303.0		139 ^c 1	100	164.0				-
874.3+x	11-	625.8 1	100	248.5+x	10-	M1(+E2)	0.042 24	
1224.1+x	12-	975.9 2	100	248.5+x	10-	E2	0.00734	
1239.1+x	11-	990.1 2	100	248.5+x	10-	M1+E2	0.013 7	
1547.0+x	12-	672.8 <i>1</i> 1298.7 <i>2</i>	100 <i>4</i> 25.8 <i>12</i>	874.3+x 248.5+x	11 ⁻ 10 ⁻	M1+E2 E2	0.035 <i>19</i> 0.00427	
1662.0+x	13-	115.8 2 787.5 <i>1</i>	62 7 100 7	1547.0+x 874.3+x	12 ⁻ 11 ⁻	M1+E2 E2	5.2 <i>16</i> 0.01127	
1707.4+x	13-	468.2 <i>1</i> 483.4 <i>1</i>	100 5 66 6	1239.1+x 1224.1+x	11 ⁻ 12 ⁻	E2 M1+E2	0.0360 0.08 5	
1768.5+x	14-	106.6 2	100	1662.0+x	13-	M1+E2	6.8 17	
1822.8+x	14-	(55.0 ^{<i>f</i>†} 5) 115.2 <i>3</i>	100	1768.5+x 1707.4+x	14 ⁻ 13 ⁻	M1+E2	5.3 16	
1877.7+x	15+	$(55.0^{f^{\dagger}} 5)$	100	1822.8+x	14- 14-	[E1] [@] E1	0.472 14	$B(E1)(W_{H}) = 1.4 \times 10^{-5}$ 7
2223.1+x	16-	345.5 <i>1</i> 453.7 <i>3</i>	100 100 <i>3</i> 11.4 <i>7</i>	1768.5+x 1877.7+x 1768.5+x	14 15 ⁺ 14 ⁻	E1 E2	0.0221 0.0389	D(E1)(W.u.)-1.4×10 /
2289.1+x? 2595.5+x	(16 ⁺) 17 ⁻	(66) 372.4 2	100 100	2223.1+x 2223.1+x	16 ⁻ 16 ⁻	[E1] [@] M1	0.289 0.258	
2723.9+x	17 ⁺	434 <mark>8</mark>	20 3	2289.1+x?	(16 ⁺)	[M1] [@]	0.1709	

$\gamma(^{198}{\rm Bi})$

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ ^{&}	$I_{\gamma}^{\&d}$	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^a	α ^e
2723.9+x	17^{+}	500.8 1	100 5	2223.1+x 16 ⁻	E1	0.00988
2837.7+x	(18 ⁻)	242.2 2	100	2595.5+x 17 ⁻	(M1) [#]	0.836
2853.7+x	17+	630.5 1	100 4	2223.1+x 16 ⁻	E1	0.00620
		976.4 <i>3</i>	11.6 10	$1877.7 + x 15^+$	E2	0.00733
3132.0+x	(19 ⁻)	294.1 <i>3</i>	100	2837.7+x (18 ⁻)	(M1) [#]	0.490
3203.6+x	18+	349.9 4	100	2853.7+x 17 ⁺	M1+E2	0.19 12
3232.8+x	18-	379.1 1	100	2853.7+x 17 ⁺	El	0.0179
3300.6+X	18'	5/6./1	100	$2/23.9 + x = 1/^{-1}$	MI () (1) #	0.0804
3428.9+x	(20)	296.6 3	100 13	3132.0+x (19)	(MI)"	0.479
		591.3 <u>3</u>	21 4	2837.7+x (18 ⁻)	[E2]	0.0208
3451.9+x	10+	248.3 ⁺ 3	100	3203.6+x 18 ⁺		0.01550
3635.4+x	19+	402.6 4	100	3232.8+x 18 ⁻	EI #	0.01572
3746.6+x	(21 ⁻)	317.5 3	100 14	$3428.9+x (20^{-})$	(M1)"	0.397
		615.2 5	29 5	3132.0+x (19 ⁻)	[E2] [@]	0.0190
3763.1+x	19+	462.5 [‡] 2	100	3300.6+x 18 ⁺	M1	0.1442
3966.0+x	20^{+}	330.6 2	100	3635.4+x 19 ⁺	M1	0.356
4064.9+x	(20^{+})	301.8 3	100	3763.1+x 19 ⁺	(M1)#	0.456
4126.4+x	(22 ⁻)	379.8 [‡] 1	100	3746.6+x (21 ⁻)	[M1] [@]	0.245
4157.6+x		924.8 [‡] 2	100	3232.8+x 18 ⁻		
4192.2+x	(21^{+})	226.2 6	100	3966.0+x 20 ⁺	(M1)	1.011 16
4339.3+x	(23 ⁻)	212.9 2	100	4126.4+x (22 ⁻)	(M1)#	1.197
4384.7+x	(21^{+})	319.8 4	100	4064.9+x (20 ⁺)	(M1) [#]	0.390
4482.5+x	(22^{+})	290.3 2	100	$4192.2 + x (21^+)$	(M1)	0.508
4627.1+x	(24 ⁻)	287.8 <i>3</i>	100	4339.3+x (23 ⁻)	(M1) [#]	0.520
4645.9+x	(22^{+})	261.2 4	100	4384.7+x (21 ⁺)	(M1) [#]	0.679
4661.7+x		504 ^{‡g}	100	4157.6+x		
4845.4+x	(23 ⁺)	362.9 <i>3</i>	100	4482.5+x (22 ⁺)	(M1) [#]	0.277
4856.3+x	(25 ⁻)	229.2 1	100	4627.1+x (24 ⁻)	[M1] [@]	0.975
5271.9+x	(24 ⁺)	426.5 3	100	4845.4+x (23 ⁺)	(M1) [#]	0.179
5767.4+x	(25 ⁺)	495.5 4	100	5271.9+x (24 ⁺)	(M1) [#]	0.1201
5970.9+x	(26 ⁺)	203.5 3	100	5767.4+x (25 ⁺)	(M1)	1.358
6486.0+x	(27^{+})	515.1 5	100	5970.9+x (26 ⁺)	$(M1)^{#}$	0.1083

$\gamma(^{198}\text{Bi})$ (continued)

[†] Based on a doubly-placed 55.0γ proposed in 1996Zh23. This doublet could not be confirmed by 2014Pa53 since the energy threshold was somewhat higher than 55 keV in their experiment. Evaluator's note: proposed 55.0-keV transition from 1822.5+x, 14⁻ to 1768.6+x, 14⁻, requiring mult=M1 or M1+E2 seems questionable since no conclusive evidence is provided in 1996Zh23.

[‡] Observed only and placed by 2014Pa53.

[#] 2014Pa53 quote multipolarity from 2000Zw02, where the assignments are based on measurements of DCO ratios and γ transition intensity balances.

[@] Assumed assignment from ΔJ^{π} value.

& From ${}^{187}\text{Re}({}^{16}\text{O},5n\gamma)$, except as noted.

^{*a*} From DCO in 187 Re(16 O,5n γ) or 184 W(19 F,5n γ), except as noted.

^b From ¹⁹⁸Bi IT decay (7.7 s).

^c From ²⁰²At α decay (184 s).

^{*d*} Relative photon branching from each level.

^e Additional information 2.

Adopted Levels, Gammas (continued)

 $\gamma(^{198}\text{Bi})$ (continued)

^f Multiply placed.^g Placement of transition in the level scheme is uncertain.

¹⁹⁸₈₃Bi₁₁₅

¹⁹⁸₈₃Bi₁₁₅

Adopted Levels, Gammas

¹⁹⁸₈₃Bi₁₁₅