¹⁸⁷Re(¹⁶O,5nγ) 2014Pa53,1996Zh23

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Huang Xiaolong and Kang Mengxiao	NDS 133, 221 (2016)	1-Dec-2015

2014Pa53: Includes ¹⁸⁵Re(¹⁶O,3n γ). E(¹⁶O)=112.5 MeV. 18.5 mg/cm²-thick, natural Re target. Prompt γ -ray spectroscopy study using the INGA array comprising of 15 Compton-suppressed HPGe detectors at Pelletron accelerator facility of IUAC, New Delhi. Measured E γ , I γ , $\gamma\gamma\gamma$ coin., $\gamma\gamma(\theta)$ (DCO) and linear polarization. Deduced: level scheme, J, π , multipolarity, magnetic dipole bands, B(M1)/B(E2) ratios, configurations. Comparison with tilted-axis cranking (TAC) model calculations.

1996Zh23: ¹⁸⁷Re(¹⁶O,5n γ), E=85-105 MeV; measured E γ , I γ , $\gamma\gamma(t)$, $\gamma(\theta)$ with 6 BGO(AC)HPGe detectors and planar Ge detector. See also 1996Zh04, 1996Zh27, 1995Zh08, 1994Da17.

¹⁹⁸Bi Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
0.0	$(2^+, 3^+)^{\#}$	10.3 min 3	Level not populated in the present study. configuration: $\pi(h_{+1}^{+1}) \otimes \nu(f_{-1}^{-1})$ (2014Pa53).
0.0+x	7+	11.6 min <i>3</i>	Additional information 1. This level decays by $\varepsilon + \beta^+$ decay and no γ transition from this level is known. Thus the excitation energy of this state remains unknown. J^{π} : 248.5 γ E3 from 10 ⁻ . configuration: $\pi(h_{\pm n}^{\pm n}) \otimes \gamma(f_{\pm n}^{\pm n})$ (2014Pa53).
248.5+x 5 874.4+x 5 1224.0+x 6 1239.0+x 6 1547.0+x 6 1662.0+x 6 1707.3+x 6 1768.6+x 6 1822.5+x 6	10 ^{-#} 11 ⁻ 12 ⁻ 11 ⁻ 12 ⁻ 13 ⁻ 13 ⁻ 14 ⁻ 14 ⁻	7.7 s 5	configuration: $\pi(h_{9/2}^{+1}) \otimes \nu(i_{13/2}^{-1})$ (2014Pa53).
$1877.8+x \ 6$ $2223.3+x \ 6$ $2289.3+x?^{a} \ 12$ $2595.7+x^{\&} \ 7$ $2724.1+x^{a} \ 7$ $2837.9+x^{\&} \ 7$ $2837.9+x^{\&} \ 7$ $3132.1+x^{\&} \ 7$ $3132.1+x^{\&} \ 7$ $3203.7+x \ 8$ $3232.9+x \ 7$ $3300.8+x^{a} \ 7$ $3429.0+x^{\&} \ 7$ $3429.0+x^{\&} \ 7$ $3452.0+x \ 8$ $3635.5+x^{@} \ 8$ $3746.7+x^{\&} \ 8$ $3746.7+x^{\&} \ 8$ $3763.3+x^{a} \ 7$ $3966.1+x^{@} \ 8$ $4126.5+x^{\&} \ 8$ $4157.7+x \ 7$ $4192.3+x^{@} \ 10$ $4339.4+x^{\&} \ 8$	15^{+} $16^{-} (16^{+})$ $17^{-} 17^{+} (18^{-})$ $17^{+} (19^{-})$ $18^{+} 18^{-} 18^{+} (20^{-})$ $19^{+} (21^{-}) 19^{+} 20^{+} (20^{+}) (22^{-})$ $(21^{+}) (23^{-}) (21^{+}) (23^{-})$	8.0 ns <i>36</i>	configuration: $\pi(h_{9/2}^{+1}) \otimes v(i_{13/2}^{-2}p_{3/2}^{-1})$ (2014Pa53). T _{1/2} : From $\gamma(t)$ in 1996Zh23. configuration: $\pi(h_{9/2}^{+1}) \otimes v(i_{13/2}^{-1}f_{5/2}^{-2})$ (2014Pa53).

¹⁸⁷Re(¹⁶O,5nγ) 2014Pa53,1996Zh23 (continued)

¹⁹⁸Bi Levels (continued)

E(level) [†]	Jπ‡	E(level) [†]	Jπ‡	E(level) [†]	Jπ‡	E(level) [†]	J ^π ‡
4384.9+x ^a 9	(21 ⁺)	4646.1+x ^a 10	(22^{+})	4856.4+x ^{&} 9	(25 ⁻)	5971.0+x [@] 12	(26 ⁺)
4482.6+x [@] 10	(22^{+})	4661.7+x 12		5272.0+x [@] 11	(24^{+})	6486.1+x [@] 13	(27 ⁺)
4627.2+x ^{&} 9	(24 ⁻)	4845.5+x [@] 11	(23+)	5767.5+x [@] 12	(25^+)		

[†] From a least-squares fit to $E\gamma$.

[‡] From the deduced transition multipolarities and the proposed level scheme in 2014Pa53, unless otherwise stated.

[#] From Adopted Levels.

^(a) Band(A): $\Delta J=1$ band 1, based on 19⁺. Proposed configuration= $\pi(h_{9/2}^{+1}) \otimes \nu(i_{13/2}^{-2} (p_{3/2}f_{5/2})^{-3})$ for lower members of the band and $\pi(h_{9/2}^{+1}) \otimes \nu(i_{13/2}^{-4} (p_{3/2}f_{5/2})^{-3})$ after the back-bending (2014Pa53); interpreted as a magnetic-dipole rotational (δ) band.

⁶ Band(B): $\Delta J=1$ band 2, based on 17⁻. Proposed configuration= $\pi(h_{9/2}^{+1}) \otimes \nu(i_{13/2}^{-3})$ for lower members of the band and $\pi(h_{9/2}^{+1}) \otimes \nu(i_{13/2}^{-3} p_{3/2}^{-2})$ after the back-bending (2014Pa53); interpreted as a magnetic-dipole rotational (δ) band. Evaluator's note: proposed configuration after the back-bend seems questionable since a pair of $p_{3/2}$ neutrons is unlikely to produce such an upbend with a gain in alignment; a back-bend is generally caused by an intruder (high-spin) orbital.

^{*a*} Band(C): $\Delta J=1$ band 3, based on 16⁺. Proposed tentative configuration= $\pi(h_{9/2}^{+2}i_{13/2}^{+1}s_{1/2}^{-2})\otimes \nu(i_{13/2}^{-1})$.

$\gamma(^{198}\text{Bi})$

A 222.7 γ placed from a 3075 level in 1996Zh23 is not confirmed by 2014Pa53. Note that orderings of the γ rays in bands 1, 2 and 3 in 2014Pa53 are quite different from those in 2000Zw02.

DCO ratios are for 90° and 148° geometry. Expected values are 1.81 for a stretched quadrupole transition when gated on a stretched dipole, and 0.55 for a stretched dipole when gated on stretched quadrupole transition (2014Pa53). Values of POL are expected to be positive for electric and negative for magnetic transitions.

Ε _γ &	$I_{\gamma}^{\&a}$	E_i (level)	\mathbf{J}_i^{π}	$E_f \qquad J_f^{\pi}$	Mult.	α b	Comments
$(55.0^{c\dagger} 5)$		1822.5+x	14-	1768.6+x 14 ⁻			
(55.0 ^{<i>c</i>†} 5)		1877.8+x	15+	1822.5+x 14 ⁻	[E1] [@]	0.472 14	
(66)		2289.3+x?	(16 ⁺)	2223.3+x 16 ⁻	[E1] [@]	0.289	
106.6 2	9.6 12	1768.6+x	14-	1662.0+x 13 ⁻	M1+E2	6.8 17	Mult.: DCO=0.91 24 (from 625.8-keV, ΔJ=1, M1(+E2) gate) (2014Pa53).
110.0 4	0 (11	1077.0	1.5+	17(0.(1.4-	F 1	0.045 6	Other: $E\gamma = 106.65$, $I\gamma = 104$ (1996Zh23).
110.8 4	8.6 11	18//.8+x	15	1/68.6+x 14	EI	0.345 6	Mult.: DCO= $0.98\ 26$ (from 345.5-keV, $\Delta J=1, E1 \text{ gate}$) (2014Pa53).
							Other: $E\gamma = 109.45$, $I\gamma = 63$ (1996Zh23).
115.2 3	5.17	1822.5+x	14-	1707.3+x 13 ⁻	M1+E2	5.3 16	Mult.: DCO=1.69 46 (from 975.9-keV, ΔJ =2, E2 gate) (2014Pa53).
115 0 0	10.0.12	1((2)) +	12-	1547.0 + 12-	M1 . E2	5016	Other: $E\gamma = 116$ (1996Zh23).
115.8 2	10.0 12	1002.0+X	15	1547.0+X 12	MIT+E2	5.2 10	Mull.: $DCO=1.05 23$ (from 625.8-KeV, AI=1 M1(+F2) gate) (2014Pa53)
							Other: $E\gamma = 115.8 5$, $I\gamma = 10 4$ (1996Zh23).
203.5 3	1.0 2	5971.0+x	(26+)	5767.5+x (25-	+) (M1) [#]	1.358	
212.9 2	1.1 2	4339.4+x	(23 ⁻)	4126.5+x (22-) (M1) [#]	1.197	
226.2 6	3.0 4	4192.3+x	(21^{+})	3966.1+x 20+	(M1) [#]	1.011 16	
229.2 1	0.6 1	4856.4+x	(25 ⁻)	4627.2+x (24-) [M1] [@]	0.975	
242.2 2	4.3 5	2837.9+x	(18 ⁻)	2595.7+x 17 ⁻	(M1) [#]	0.836	Other: $E\gamma$ =242.7 5, $I\gamma$ =12 3 (1996Zh23). This γ placed from a 2465 level in 1996Zh23 is not confirmed by 2014Pa53.

¹⁸⁷Re(¹⁶O,5nγ) 2014Pa53,1996Zh23 (continued)

$\gamma(^{198}\text{Bi})$ (continued) $I_{\gamma}^{\&a}$ $E_{\gamma}^{\&}$ $\alpha^{\boldsymbol{b}}$ E_i (level) J_i^{π} J_{f}^{π} Mult. Comments \mathbf{E}_{f} 248.3[‡] 3 3452.0+x 18^{+} 0.8 1 3203.7+x 248.5 5 248.5+x 10^{-} 0.0+x 7^{+} E3 1.54 3 E_{γ} ,Mult.: From Adopted Gammas. (M1)[#] 261.2 4 1.1 2 4646.1+x (22^{+}) 4384.9+x (21^{+}) 0.679 (M1)[#] 287.8 3 0.8 1 4627.2+x 4339.4+x (23^{-}) 0.520 (24^{-}) (M1)[#] 290.3 2 1.62 4482.6 + x (22^{+}) 4192.3+x (21^{+}) 0.508 (M1)[#] 294.1 3 2.8 3 3132.1+x (19^{-}) 2837.9+x (18^{-}) 0.490 $(M1)^{\#}$ 296.63 2.4 3 3429.0+x (20^{-}) 3132.1+x (19^{-}) 0.479 4065.1+x 3763.3+x 19+ (M1)[#] 301.8 3 4.2 6 (20^{+}) 0.456 $(M1)^{#}$ 317.5 3 2.1 3 3746.7+x (21^{-}) 3429.0+x (20^{-}) 0.397 319.8 4 3.2.5 4384.9+x (21^{+}) 4065.1+x (20^{+}) $(M1)^{#}$ 0.390 8.2 10 330.6 2 3966.1 + x 20^{+} 3635.5 + x 19^{+} M1 0.356 Mult.: DCO=1.01 20 (from 379.1-keV, $\Delta J=1$. E1 gate); POL=-0.25 10 (2014Pa53). $A_2 = -0.33$ 7, $A_4 = +0.04$ 3 (1996Zh23). Other: $E\gamma = 330.1 5$, $I\gamma = 15 3$ (1996Zh23). 345.5 1 100 3 2223.3+x 16^{-} 1877.8+x 15^{+} E1 0.0221 Mult.: DCO=1.81 27 (from 975.9-keV, ΔJ=2, E2 gate); POL=+0.18 5 (2014Pa53). $A_2 = -0.295, A_4 = +0.024$ (1996ZH23). Other: Ey=345.3 5 (1996Zh23). 349.9 4 5.0 4 3203.7+x 18^{+} 17^{+} 0.19 12 Mult.: DCO=0.94 26 (from 345.5-keV, ΔJ=1, 2853.8+x M1+E2 E1 gate) (2014Pa53). Other: $E\gamma = 350.1 5$, $I\gamma = 10 3$ (1996Zh23). (M1)[#] 362.9 3 4845.5+x (23^{+}) 4482.6+x (22^{+}) 0.277 1.6 2 372.4 2 7.26 2595.7+x 17^{-} 2223.3+x 16-M1 0.258 Mult.: DCO=0.96 17 (from 345.5-keV, ΔJ=1, E1 gate); POL=-0.26 15 (2014Pa53). 379.1 I 39.0 20 3232.9+x 18^{-} 2853.8+x 17^{+} E1 0.0179 Mult.: DCO=1.80 30 (from 975.9-keV, ΔJ=2, E2 gate); POL=+0.16 7 (2014Pa53). $A_2 = -0.28 \ 9, \ A_4 = +0.04 \ 6 \ (1996Zh23).$ Other: $E\gamma = 378.9 5$, $I\gamma = 31 4$ (1996Zh23). 379.8[‡] 1 [M1][@] 1.8 2 4126.5+x (22^{-}) 3746.7+x (21^{-}) 0.245 402.6 4 18.3 12 19+ Mult.: DCO=0.91 10 (from 379.1-keV, ΔJ=1, 3635.5+x 3232.9+x 18 E1 0.01572 E1 gate); POL=+0.16 7 (2014Pa53). $A_2 = -0.17 8$, $A_4 = +0.06 3$ (1996Zh23). Other: Eγ=402.3 5, Iγ=19 6 (1996Zh23). (24^{+}) (M1)[#] 0.179 426.5 3 1.3 2 5272.0+x 4845.5 + x (23⁺) [M1][@] 434^d 61 2724.1 + x 17^{+} 2289.3 + x? (16⁺) 0.1709 453.7 3 11.4 7 2223.3+x E2 0.0389 Mult.: DCO=0.61 12 (from 625.8-keV, ΔJ=1, 16^{-} 1768.6 + x 14^{-} M1(+E2) gate); POL=+0.23 8 (2014Pa53). Other: $E\gamma = 454.7 5$, $I\gamma = 8.8 21$ (1996Zh23). 462.5[‡] 2 I_{γ} : uncertainty of 0.07 in table I of 2014Pa53 8.97 3763.3+x 19^{+} 3300.8+x 18^{+} M1 0.1442 seems too low in comparison to other $\Delta(I\gamma)$ in the table; increased to 0.7 by evaluator. Mult.: DCO=0.98 19 (from 345.5-keV, ΔJ=1, E1 gate) (2014Pa53). 468.2 1 19.8 10 1707.3+x 13-1239.0+x 11-E2 0.0360 Mult.: DCO=0.53 10 (from 345.5-keV, ΔJ=1, E1 gate); POL=+0.21 6 (2014Pa53) A₂=+0.20 5, A₄=+0.06 4 (1996Zh23). Other: $E\gamma = 468.0 5$, $I\gamma = 20 4$ (1996Zh23). 483.4 1 13.0 12 1707.3 + x 13^{-} 1224.0+x 12^{-} M1+E2 0.08 5 Mult.: DCO=1.01 25 (from 345.5-keV, ΔJ=1, E1 gate); POL=-0.26 10 (2014Pa53) $A_2 = -0.17 9$, $A_4 = -0.05 7 (1996Zh23)$. Other: $E\gamma = 482.45$, $I\gamma = 7.324$ (1996Zh23). (M1)[#] 495.5 4 1.2 2 5767.5+x (25^{+}) 5272.0+x 0.1201 (24^{+})

Continued on next page (footnotes at end of table)

¹⁹⁸₈₃Bi₁₁₅-4

¹⁸⁷Re(¹⁶O,5nγ) **2014Pa53,1996Zh23** (continued)

$\gamma(^{198}\text{Bi})$ (continued)

Eγ ^{&}	$I_{\gamma}^{\&a}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	$\alpha^{\boldsymbol{b}}$	Comments
500.8 1	30.4 15	2724.1+x	17+	2223.3+x	16 ⁻	E1	0.00988	Mult.: DCO=0.97 <i>11</i> (from 345.5-keV, ΔJ =1, E1 gate); POL=+0.20 <i>11</i> (2014Pa53).
504 [‡] <i>d</i>	107	4661 7+x		4157 7+x				Other: $E\gamma = 500.3 \ 5, \ 1\gamma = 20 \ 6 \ (1996Zh23).$
515.1 5 576.7 1	0.8 2 23.7 <i>15</i>	6486.1+x 3300.8+x	(27 ⁺) 18 ⁺	5971.0+x 2724.1+x	(26 ⁺) 17 ⁺	(M1) [#] M1	0.1083 0.0804	Mult.: DCO=1.04 26 (from 345.5-keV, $\Delta J=1$, E1 gate); POL=-0.25 10
								Other: $E\gamma=576.0 5$, $I\gamma=13 3$ (1996Zh23).
591.3 <i>3</i>	0.5 1	3429.0+x	(20 ⁻)	2837.9+x	(18 ⁻)	[E2] [@]	0.0208	Other: $E\gamma$ =590.4 5, $I\gamma$ =4.1 19 (1996Zh23). This γ placed from a 3821 level in 1996Zh23 is not confirmed by 2014Pa53.
615.2 5	0.6 1	3746.7+x	(21 ⁻)	3132.1+x	(19 ⁻)	[E2] [@]	0.0190	
625.8 1	83 3	874.4+x	11-	248.5+x	10-	M1(+E2)	0.042 24	Mult.: DCO=1.07 <i>16</i> (from 345.5-keV, ΔJ =1, E1 gate); POL=-0.14 <i>6</i> (2014Pa53). A ₂ =-0.23 <i>3</i> , A ₄ =+0.01 <i>3</i> (1996Zh23).
630.5 1	61.1 25	2853.8+x	17+	2223.3+x	16-	E1	0.00620	Other: $E\gamma$ =624.8 5, $I\gamma$ =72 5 (1996Zh23). Mult.: DCO=0.99 10 (from 345.5-keV, ΔJ =1, E1 gate); POL=+0.21 7 (2014Pa53) A ₂ =-0.31 8, A ₄ =+0.03 2 (1996Zh23).
672.8 1	66.0 24	1547.0+x	12-	874.4+x	11-	M1+E2	0.035 19	Other: $E\gamma$ =630.5 5, $I\gamma$ =48 5 (1996Zh23). Mult.: DCO=0.84 12 (from 345.5-keV, ΔJ =1, E1 gate); POL=-0.24 6 (2014Pa53) A ₂ =-0.22 4, A ₄ =-0.10 4 (1996Zh23).
787.5 1	16.2 11	1662.0+x	13-	874.4+x	11-	E2	0.01127	Other: $E\gamma$ =671.7 5, $I\gamma$ =59 5 (1996Zh23). Mult.: DCO=0.60 10 (from 345.5-keV, ΔJ =1, E1 gate); POL=+0.19 8 (2014Pa53) A ₂ =+0.16 2, A ₄ =+0.07 3 (1996Zh23). Other: $E\gamma$ =787 5 5 $I\gamma$ =13 3 (1996Zh23)
924.8 [‡] 2	4.3 6	4157.7+x		3232.9+x	18-			
975.9 2	16.0 <i>12</i>	1224.0+x	12-	248.5+x	10-	E2	0.00734	Mult.: DCO=0.54 <i>11</i> (from 345.5-keV, ΔJ=1, E1 gate); POL=+0.13 <i>7</i> (2014Pa53).
976.4 <i>3</i>	7.1 6	2853.8+x	17+	1877.8+x	15+	E2	0.00733	Other: $E\gamma=975.3 \ 5 \ (1996Zh23)$. Mult.: DCO=0.65 <i>18</i> (from 625.8-keV, $\Delta J=1, M1(+E2) \text{ gate} \ (2014Pa53)$.
990.1 2	24.6 10	1239.0+x	11-	248.5+x	10-	M1+E2	0.013 7	Mult: $DCO=1.61 \ 29 \ (from 345.5-keV, \Delta J=1, E1 \ gate); POL=-0.12 \ 8 \ (2014Pa53) \ A_2=-0.24 \ 9, \ A_4=-0.08 \ 1 \ (1996Zh23).$
1298.7 2	17.0 8	1547.0+x	12-	248.5+x	10-	E2	0.00427	Mult.: DCO= $0.62 \ 14 \ (from 345.5-keV, \Delta J=1, E1 \ gate); POL=+0.12 \ 8 \ (2014Pa53).$ Other: Ey=1297 (1996Zh23).

¹⁸⁷Re(¹⁶O,5nγ) 2014Pa53,1996Zh23 (continued)

$\gamma(^{198}\text{Bi})$ (continued)

- [†] From Adopted Gammas, based on a doubly-placed 55.0 γ proposed in 1996Zh23. This doublet could not be confirmed by 2014Pa53 since the energy threshold was somewhat higher than 55 keV in their experiment. Evaluator's note: proposed 55.0-keV transition from 1822.5+x, 14⁻ to 1768.6+x, 14⁻, requiring mult=M1 or M1+E2 seems questionable since no conclusive evidence is provided in 1996Zh23.
- [‡] Observed only and placed by 2014Pa53.
- [#] 2014Pa53 quote multipolarity from 2000Zw02, where the assignments are based on measurements of DCO ratios and γ transition intensity balances.
- [@] Assumed assignment from ΔJ^{π} value.
- [&] From 2014Pa53, except as noted.
- ^{*a*} Relative intensity normalized to $I\gamma(345.5 \gamma)=100 3$.
- ^b Additional information 2.
- ^c Multiply placed.
- ^d Placement of transition in the level scheme is uncertain.

¹⁹⁸₈₃Bi₁₁₅

¹⁹⁸₈₃Bi₁₁₅