184 W(19 F,5n γ) **2000Zw02**

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Huang Xiaolong and Kang Mengxiao	NDS 133, 221 (2016)	1-Dec-2015

E=107 MeV. Measured E γ , $\gamma\gamma(\theta)$ (DCO), B(M1)/B(E2) ratios, and branching ratios using 8π spectrometer comprised of 20 hyper-pure Ge detectors and a 71-element BGO calorimeter. The B(M1)/B(E2) values were measured by extracting intensities at the positions of the expected E2 transitions. Lower limit estimates of the B(E2) branching ratios are also given.

B1 Levels

E(level)	$J^{\pi \ddagger}$	Comments
0+x ^{†@}	J1 [#]	
203.3+x [@] 3	J1+1	
429.3+x [@] 4	J1+2	
718.8+x [@] 4	J1+3	B(M1)/B(E2)>17.
$1082.1 + x^{@} 5$	J1+4	B(M1)/B(E2)>9.
1508.7+x [@] 5	J1+5	B(M1)/B(E2)>20.
1978.0+x [@] 5	J1+6	B(M1)/B(E2)>15.
2473.9+x [@] 5	J1+7	B(M1)/B(E2)>15.
2989.1+x [@] 6	J1+8	
0+y ^{†&}	J2 [#]	
372.20+y ^{&} 24	J2+1	
614.30+y ^{&} 24	J2+2	B(M1)/B(E2)>8.
827.3+y& <i>3</i>	J2+3	B(M1)/B(E2)>8.
1145.1+y& 3	J2+4	B(M1)/B(E2)>5.
1441.8+y& 4	J2+5	B(M1)/B(E2)=5.7 3.
1735.5+y& 4	J2+6	B(M1)/B(E2)=6.5 3.
2023.0+y 5	J2+7	
$0+z^{\dagger a}$	J3 [#]	
$345.4 + z^{a} 3$	J3+1	
$846.2 + z^{a}$ 5	J3+2 I3+3	
$1529.0+2 \ 0$ $1631.5+z^{a} \ 6$	J3+3 J3+4	
$2208.5 + z^a$ 7	J3+5	
2528.8+z ^a 8	J3+6	
2789.8+z ^a 8	J3+7	

[†] Band head energy undetermined.

[‡] From band structure.

[#] Spin of band head undetermined.

[@] Band(A): magnetic dipole band 1.

[&] Band(B): magnetic dipole band 2.

^{*a*} Band(C): magnetic dipole band 3.

¹⁸⁴W(¹⁹F,5nγ) **2000Zw02** (continued)

$\gamma(^{198}\text{Bi})$

R1(DCO)=[I γ_1 (at 37°),gated with I γ (at 79°)]/ [I γ_1 (at 79°),gated with I γ (at 37°)].

R2(DCO)=[$I\gamma_1(at 37^\circ)$, gated with $I\gamma(at 37^\circ)$]/ [$I\gamma_1(at 79^\circ)$, gated with $I\gamma(at 37^\circ)$].

A 469.3 γ placed from a 1978.0+x level correspond to the in-band transition is not confirmed by 2014Pa53. A 468.2 γ correspond to the lower-lying transition seen from γ spectra in Fig.5 in 2014Pa53. Also orderings of the γ rays in bands 1, 2 and 3 are quite different from those in ¹⁸⁷Re(¹⁶O,5n γ) by 2014Pa53.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.‡	α #	Comments
203.3+x	J1+1	203.3		0+x	J1	[M1]	1.362	R1=1.19 10, R2=0.79 15.
429.3+x	J1+2	226.0		203.3+x	J1+1	[M1]	1.014	R1=1.13 8.
718.8+x	J1+3	289.5	100	429.3+x	J1+2	[M1]	0.512	R1=1.04 7, R2=0.78 15.
		515.5	3.5 [†] 4	203.3+x	J1+1	[E2]	0.0285	
1082.1+x	J1+4	363.3	100	718.8+x	J1+3	[M1]	0.276	R2=1.02 17.
		652.8	9.8 [†] 8	429.3+x	J1+2	[E2]	0.01673	
1508.7+x	J1+5	426.6	100	1082.1+x	J1+4	[M1]	0.179	R1=1.02 8, R2=0.69 12.
		789.9	7.3 10	718.8+x	J1+3	[E2]	0.01120	
1978.0+x	J1+6	469.3	100	1508.7+x	J1+5	[M1]	0.1387	R1=1.08 10, R2=1.20 35.
		895.9	$13^{\dagger} 2$	1082.1+x	J1+4	[E2]	0.00868	
2473.9+x	J1+7	495.9	100	1978.0+x	J1+6	[M1]	0.1198	R1=1.22 13, R2=0.93 30.
		965.2 [†]	$15^{\dagger} 2$	1508.7+x	J1+5	[E2]	0.0075	
2989.1+x	J1+8	515.2		2473.9+x	J1+7	[M1]	0.1083	R1=0.94 13, R2=0.69 20.
372.20+y	J2+1	372.2		0+y	J2	[M1]	0.258	R1=0.92 5, R2=0.72 4.
614.30+y	J2+2	242.1	100	372.20+y	J2+1	[M1]	0.837	
		614.3	22 [†] 1	0+y	J2	[E2]	0.0191	
827.3+y	J2+3	213.0	100	614.30+y	J2+2	[M1]	1.196	R1=1.06 9, R2=0.78 6.
		455.1	$10^{\dagger} I$	372.20+y	J2+1	[E2]	0.0386	
1145.1+y	J2+4	317.8	100	827.3+y	J2+3	[M1]	0.396	R1=0.99 8, R2=0.81 10.
		530.8	11 [†] 1	614.30+y	J2+2	[E2]	0.0266	
1441.8+y	J2+5	296.7	100	1145.1+y	J2+4	[M1]	0.478	R1=1.00 9, R2=0.74 7.
		614.5	19 [†] 1	827.3+y	J2+3	[E2]	0.0191	
1735.5+y	J2+6	293.7	100	1441.8+y	J2+5	[M1]	0.492	R1=0.92 10, R2=0.66 5.
		590.4 [†]	14 [†] 1	1145.1+y	J2+4	[E2]	0.0209	
2023.0+y	J2+7	287.5		1735.5+y	J2+6	[M1]	0.521	R1=1.00 10, R2=0.89 5.
345.4+z	J3+1	345.4		0+z	J3	[M1]	0.316	R2=0.59 4.
846.2+z	J3+2	500.8		345.4+z	J3+1	[M1]	0.1167	R1=1.05 8, R2=0.65 8.
1329.6+z	J3+3	483.4		846.2+z	J3+2	[M1]	0.1282	R1=0.98 8, R2=0.60 16.
1631.5+z	J3+4	301.9		1329.6+z	J3+3	[M1]	0.456	R1=1.12 10.
2208.5+z	J3+5	577.0		1631.5+z	J3+4	[M1]	0.0803	R1=1.01 9, R2=0.61 7.
2528.8+z	J3+6	320.3		2208.5+z	J3+5	[M1]	0.388	R1=1.03 13, R2=0.50 14.
2789.8+z	J3+7	261.0		2528.8+z	J3+6	[M1]	0.680	R1=1.09 13,R2=0.69 23.

[†] γ -ray not observed but expected, upper limit of intensity is estimated by authors.

[‡] From magnetic dipole band measurements. The relative γ -ray intensities within the rotational band are approximately constant suggest that γ -ray transition is M1 not E1.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

184 W(19 F,5n γ) 2000Zw02

Level Scheme

Intensities: Relative photon branching from each level

¹⁹⁸₈₃Bi₁₁₅

184 W(19 F,5n γ)	2000Zw02

¹⁹⁸₈₃Bi₁₁₅