¹⁹⁷Tl IT decay (0.54 s)

TypeHistoryLiterature Cutoff DateFull EvaluationHuang Xiaolong, Zhou ChunmeiNDS 104, 283 (2005)1-Jan-2002

Parent: ¹⁹⁷Tl: E=608.22 8; $J^{\pi}=9/2^{-}$; $T_{1/2}=0.54 \text{ s } I$; %IT decay=100.0 Sources produced by daughter of ¹⁹⁷Pb IT decay (1955An01,1957An54), ¹⁹⁷Au(α ,4n) (1963Di10).

¹⁹⁷Tl Levels

$E(level)^{\dagger}$	$J^{\pi \ddagger}$	T _{1/2}	Comments				
0.0	1/2+	2.84 h 4	T _{1/2} : from ce-decay curves (1961Ju05) chem, ms. Others: 1955An01, 1955Kn34, 1957An53, 1979Br12.				
385.8 <i>3</i>	$3/2^{+}$						
608.2 28	9/2-	0.54 s <i>1</i>	%IT=100 T _{1/2} : from 1953He57. Others: 0.55 s <i>10</i> (1957An54), 0.53 s <i>3</i> (1963Di10), 0.55 s <i>2</i> (1965Sc18). $(222\gamma)(386\gamma)(\theta)$: anisotropy=0.31 <i>5</i> , A ₂ (386 γ)=0.19 <i>3</i> (1966Sc28).				

[†] From decay scheme and γ 's by using least-squares fit to data.

[‡] From Adopted Levels.

$\gamma(^{197}\text{Tl})$

Iy normalization: For %IT=100 isomer decays with $\alpha(222\gamma, E3)=2.28$.

E_{γ}	$I_{\gamma}^{\dagger \#}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ	α@	Comments
222.45 5	30.5 10	608.2	9/2-	385.8	3/2+	E3		2.28	$\begin{aligned} \alpha(K) &= 0.358; \ \alpha(L) &= 1.417; \ \alpha(M) &= \\ 0.384; \ \alpha(N+) &= 0.1250 \end{aligned}$ $E_{\gamma}: \ from \ 1957An54, \ ce. \ Others: \ 222.8 \ I \\ (1977Ve02), \ 222.5 \ 2 \ (1978Li10). \end{aligned}$ $I_{\gamma}: \ I_{\gamma}/I_{\gamma}(3850) &= 0.33 \ from \ I(ce) \ data. \\ \alpha(K) &= p = 0.41 \ 5 \ (1965Sc18) \ K \ x \ ray/I_{\gamma}, \\ scin; \ 0.38 \ 6 \ (1979CoZI) \ semi. \end{aligned}$ $L1:L2:L3 &= 26 \ 3:217 \ I2:100 \ (1957An54); \\ L1 + L2/L3 &= 2.5 \ (1957An53), \ 2.4 \ 4 \\ (1979CoZI). \end{aligned}$ $K/L &= 0.242 \ I8 \ (1957An54), \ 0.28 \ 5 \\ (1963Di10), \ 0.226 \ 4I \ (1979CoZI). \end{aligned}$
385.8 3	91.4 11	385.8	3/2+	0.0	1/2+	M1+E2	+1.7 3	0.094 <i>13</i>	$\begin{aligned} &\alpha(\text{K}) = 0.070 \ 11; \ \alpha(\text{L}) = 0.0180 \ 12; \\ &\alpha(\text{M}) = 0.00438 \ 25; \ \alpha(\text{N}+) = 0.00140 \ 8 \\ \text{E}_{\gamma}: \text{from } (^{3}\text{He},3n\gamma). \text{ Others: } 385.6 \ 2 \\ &(\alpha,4n\gamma), \ 385.85 \ 10 \ (^{197}\text{Pb} \ \varepsilon \ \text{decay}). \\ \text{I(ce(K) } 386\gamma)/\text{I(ce(L) } 222\gamma) = 0.136 \\ &(1957\text{An53},1957\text{An54}), \ 0.146 \\ &(1963\text{D}10). \\ &\alpha(\text{K})\text{exp} = 0.09 \ 3 \ (1965\text{Sc}18), \ 0.103 \ 10 \\ &(1966\text{Sc}28), \ 0.068 \ 11 \ (1979\text{CoZI}). \\ \text{K/L} = 3.5 \ (1957\text{An53}), \ 3.4 \ 4 \ (1963\text{D}10). \\ &\delta: \ \text{derived from} \\ &\text{I}(\gamma + \text{ce})(386\gamma,\text{M}1 + \text{E2}) = \\ &\text{I}(\gamma + \text{ce})(386\gamma,\text{M}1 + \text{E2}) = \\ &\text{I}(\gamma + \text{ce})(222\gamma,\text{E3}) \ \text{required for level} \\ &\text{intensity balance; sign from } \gamma\gamma(\theta) \\ &(1966\text{Sc}28). \ \text{Others: } 1.0 \ 1 \\ &(\alpha(\text{K})\text{exp} = 0.068 \ 11), \ + 0.82 \ 14 \ (\text{A}_2 = 0.19 \end{aligned}$

Continued on next page (footnotes at end of table)

¹⁹⁷Tl IT decay (0.54 s) (continued)

γ (¹⁹⁷Tl) (continued)

 E_{γ} <u>E_i(level)</u>

Comments

3), 2.4 8 (K/L=3.4 4). Analog: $\delta(384\gamma)^{195}$ Tl)=1.8 4.

[†] Relative intensities calculated from I(γ +ce)=100 and α .

[‡] From $\alpha(K)$ exp measurements.

[#] Absolute intensity per 100 decays.

^(a) Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁹⁷Tl IT decay (0.54 s)

