¹⁹⁶Pt(n, γ) E=thermal 1978Ya07

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Huang Xiaolong, Zhou Chunmei	NDS 104, 283 (2005)	1-Jan-2002		

Measured S(n)=5846.3 4 (1978Ya07). Others: 5849 3 (1968Sa13), 5850 3 (1977Wa08), 5846.3 4 (1985Wa02).

197Pt Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0	1/2-	
52.99 6	5/2-	
71.59 7	$3/2^{-}$	
98.58 8	3/2-	
130.98 4	$1/2^{-}$	
269.10 <i>3</i>	$1/2^{-}, 3/2^{-}$	Branching: $I\gamma(138\gamma):I\gamma(216\gamma):I\gamma(269\gamma)=32$ 14:19 4:100.
299.33 4	5/2-	Branching: $I\gamma(228\gamma):I\gamma(246\gamma):I\gamma(299\gamma)=21\ 9:47\ 14:100.$
425.7 6		
456.85 6	5/2-	Branching: $I\gamma(157\gamma):I\gamma(404\gamma):I\gamma(457\gamma)=13\ 7:9\ 3:100.$
502.43 5	3/2-	Branching: $I\gamma(233\gamma):I\gamma(371\gamma):I\gamma(431\gamma):I\gamma(502\gamma)=12$ 4:8 5:65 8:100.
595.31 8	$(5/2^-, 1/2^-)$	Branching: $I_{\gamma}(524\gamma):I_{\gamma}(542\gamma):I_{\gamma}(595\gamma)=100:100 \ 13:54 \ 11.$
708.37 5	3/2-	Branching: $I_{\gamma}(439\gamma):I_{\gamma}(637\gamma):I_{\gamma}(708\gamma)=19\ 3:17\ 3:100.$
747.81 9	1/2-	Branching: $I\gamma(649\gamma)$: $I\gamma(676\gamma)$: $I\gamma(695\gamma)$ =100:3.1 5:3.9 7.
978.0 9	$1/2^{-}, 3/2^{-}$	
(5846.29 27)	$1/2^{+}$	E(level): from S(n)=5846.29 27(2003Au03).
		J^{π} : from s-wave neutron capture.

[†] From level scheme and $E\gamma$'s by using least-squares fit to data. [‡] From Adopted Levels, except E(level)=5846.3 *4* (from s-wave neutron capture).

Eγ	$I_{\gamma}^{\dagger\ddagger}$	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Comments
71.53 17	88 39	71.59	3/2-	0.0	1/2-	
98.58 10	30 28	98.58	3/2-	0.0	$1/2^{-}$	
130.99 5	11 5	130.98	$1/2^{-}$	0.0	$1/2^{-}$	
^x 135.21 4	25 10					
138.13 4	198	269.10	$1/2^{-}, 3/2^{-}$	130.98	$1/2^{-}$	
157.38 <i>19</i>	2.4 12	456.85	5/2-	299.33	5/2-	
^x 167.32 15	9.8 31					
216.05 7	11 2	269.10	$1/2^{-}, 3/2^{-}$	52.99	5/2-	
227.62 15	4.0 15	299.33	5/2-	71.59	3/2-	
233.27 13	3.7 12	502.43	3/2-	269.10	$1/2^{-}, 3/2^{-}$	
246.15 15	8.9 24	299.33	$5/2^{-}$	52.99	5/2-	
^x 259.25 11	2.4 10					
269.12 4	59 <i>5</i>	269.10	$1/2^{-}, 3/2^{-}$	0.0	$1/2^{-}$	
^x 274.08 4	29 <i>3</i>					
299.34 <i>4</i>	19 2	299.33	$5/2^{-}$	0.0	$1/2^{-}$	
371.45 <i>34</i>	2.6 15	502.43	3/2-	130.98	$1/2^{-}$	
^x 390.38 17	3.5 8					
404.03 10	1.7 6	456.85	5/2-	52.99	5/2-	γ placement is consistent with I γ branching via ¹⁹⁷ Ir decay.
430.89 [#] 5	20 2	502.43	$3/2^{-}$	71.59	$3/2^{-}$	
439.35 10	6.8 9	708.37	3/2-	269.10	$1/2^{-}, 3/2^{-}$	
^x 441.81 9	8.7 11					
^x 453.70 22	1.9 7					
456.81 6	18 2	456.85	5/2-	0.0	$1/2^{-}$	

$\gamma(^{197}\text{Pt})$

Continued on next page (footnotes at end of table)

¹⁹⁶ Pt(\mathbf{n},γ) E=thermal		hermal 1	978Ya07 (continued)			
γ ⁽¹⁹⁷ Pt) (continued)						
Eγ	$I_{\gamma}^{\dagger\ddagger}$	E _i (level)	J_i^π	E_f	${ m J}_f^\pi$	Comments
502.44 5 ^x 517.11 5	31 2 20 2	502.43	3/2-	0.0	1/2-	
523.77 7 ^x 527.18 15	11 <i>1</i> 2.7 6	595.31	(5/2-,1/2-)	71.59	3/2-	
542.22 [#] 9 ^x 558.42 6 ^x 570.65 20 ^x 578.31 14	11 <i>I</i> 16 2 2.0 5 8.2 <i>I</i> 5	595.31	(5/2 ⁻ ,1/2 ⁻)	52.99	5/2-	E_{γ} : 578γ placement between ΔL=5 states (1978Ya07) is
595.17 <i>11</i> ^x 620.10 <i>13</i> ^x 625.50 6	5.9 <i>10</i> 3.8 6 15 2	595.31	(5/2 ⁻ ,1/2 ⁻)	0.0	1/2-	incompatible with prompt (n,γ) spectrum.
636.73 <i>10</i> 649.22 <i>5</i> ×658 74 <i>18</i>	6.2 9 100 3 5 8	708.37 747.81	3/2 ⁻ 1/2 ⁻	71.59 98.58	3/2 ⁻ 3/2 ⁻	
676.12 <i>14</i> 695.04 <i>21</i> <i>x</i> 701.93 <i>12</i>	3.1 5 3.9 7 5.6 6	747.81 747.81	1/2 ⁻ 1/2 ⁻	71.59 52.99	3/2 ⁻ 5/2 ⁻	
708.35 <i>5</i> 4868.4 <i>8</i> 5098 5 <i>4</i>	36 2 18 <i>3</i> 100	708.37 (5846.29) (5846.29)	3/2 ⁻ 1/2 ⁺ 1/2 ⁺	0.0 978.0 747 81	1/2 ⁻ 1/2 ⁻ ,3/2 ⁻ 1/2 ⁻	
5137.8 <i>4</i> 5344.0 5	17 2 3.9 9	(5846.29) (5846.29)	$1/2^+$ $1/2^+$ $1/2^+$	708.37 502.43	$3/2^{-}$ $3/2^{-}$	
5420.6 5 5577.2 5 5715.9 7	6.2 9 10 2 8.2 <i>1</i> 9	(5846.29) (5846.29) (5846.29)	$1/2^+$ $1/2^+$ $1/2^+$	425.7 269.10 130.98	1/2 ⁻ ,3/2 ⁻ 1/2 ⁻	
5747.8 <i>6</i> 5846.3 <i>4</i>	2.7 6 107 9	(5846.29) (5846.29)	$1/2^+$ $1/2^+$	98.58 0.0	3/2 ⁻ 1/2 ⁻	

[†] Relative photon intensity normalized to $I\gamma(649.22\gamma)=100$. [‡] For intensity per 100 neutron captures, multiply by 0.935. [#] Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

 $^{197}_{78}{\rm Pt}_{119}$