				Histor	y Gin i				
		ype	Author	chanon Eliterature Cuton Date					
	Full Ev	aluation Huan	ig Xiaolong, Zho	ou Chunmei	NDS 104,283 (2005)	1-Jan-2002			
$Q(\beta^{-}) = -5062 \ 10^{\circ}$ Note: Current eva	; S(n)=7459 aluation has	0 16; S(p)=4541 used the followi	<i>14</i> ; $Q(\alpha)=3889$ ng Q record -5°	<i>17</i> 2012W 061 10745	r <mark>a38</mark> 9 15 <i>4541</i> 133877	16 2003Au03.			
				¹⁹⁷ Pb Le	vels				
			Cros	s Reference (XREF) Flags				
	A ¹ B ¹ C ¹ D ²	¹⁹⁷ Pb IT decay (197 Bi ε decay (9. 197 Bi ε decay (5. 197 Bi ε decay (5. 201 Po α decay (1	43 min) E 33 min) F .04 min) G 5.3 min) H	²⁰¹ Po α dec ¹⁷⁶ Yb(²⁶ Mg ¹⁸⁶ W(¹⁶ O,5 ¹⁸⁶ W(¹⁸ O,7	cay (8.9 min) I $g_{2},5n\gamma),$ J $n\gamma)$ $n\gamma),^{186}W(^{16}O,5n\gamma)$	¹⁹⁸ Hg(³ He,4nγ) ¹⁸⁶ W(¹⁸ O,7nγ):SD			
E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF		Co	omments			
0.0 84.88 7 319.31 [@] 11	3/2 ⁻ 5/2 ⁻ 13/2 ⁺	8.1 min <i>17</i> 42.9 min <i>9</i>	ABCD GHI ABCD GH ABC E GHI	${\sqrt{6}\varepsilon + \%\beta^{+} = 1}}{\mu = -1.075 2}$ $Q = -0.08 17$ $J^{\pi}: HF = 1.3$ $T_{1/2}: unweid (1980Hi0) \mu: others:$	100 (2001 StZZ) 7(2001 StZZ) from $3/2^-$ in ²⁰¹ Po α d ghted average of 10 min 4). 1.0753 22 (1989Ra17,1 1989Ra17,1986An06); (1989Ra17,1986An06); (1989Ra17,1986An06); (1989Ra17,1986An06); nean-square charge radii 06), -0.608 (fm) ² 94 (19 om 13/2 ⁺ , M1 γ to 3/2 ⁻ %ε+%β ⁺ =81 2 1(2001 StZZ) 1.1045 27 (1989Ra17,198 1989Ra17,1986An06); 9 or -1.103 14 (1991 Du -0.47 34 (1989Ra17,198 7,1986An06), +0.378 1 nean-square charge radii 06), -0.575 (fm) ² 4 (relation for the second from 13/2 ⁺ in ²⁰¹ Po α unweighted average of 4 30 and 42 min 4 (1980)	ecay (15.3 min). n 2 (1979Ra04) and 6.2 min 12 986An06); -1.0753 22 (207 Pb compared to -1.0742 12 for 199 Pb 5An06); -0.08 18 1 to +0.078 86 for 199 Pb standard us $\Delta < r^2 >= -0.6038$ (fm) ² 50 989MeZZ). 986An06); -1.1045 27 (207 Pb -0.975 40 (205 Pb standard, 1989Ra17), 107). 36An06); +0.47 34 9 or +0.51 13 (1991Du07). ius $\Delta < r^2 >= -0.5739$ (fm) ² 47 ative to 208 Pb, 1991Du07). decay (8.9 min), M4 γ to 5/2 ⁻ . 14.6 min 9 (1979Ra04), 42 min 2 Hi04)			
952.04 <i>11</i> 988.95 <i>10</i>	7/2 ⁻ 3/2 ⁻ .5/2 ⁻		B B	J^{π} : M1 γ to J^{π} : E2+M1	5^{2} , E1 γ from $9/2^{+}$.				
1015.34 22	$(5/2,7/2)^{-}$		B	J^{π} : γ' s to 3, feeding for	$/2^{-}$ and $5/2^{-}$, $(5/2,7/2)^{-}$ or ¹⁹⁷ Bi ε decay.	based on intensity from ε decay			
1079.39 12	(7/2,9/2)-		В	J^{π} : E2 γ to 197 Bi ε d	$5/2^{-}$, $(7/2,9/2)^{-}$ based of ecay.	on intensity from ε decay feeding for			
1089.41 8	5/2-		В	J ^{π} : E2 γ to decay fee	5/2 ⁻ , M1+E2 γ to 3/2 ⁻ ding for ¹⁹⁷ Bi ε decay.	, 5/2 ⁻ based on intensity from ε			
1147.49 <i>13</i> 1164.88 <i>12</i>	$11/2^+$ (9/2) ⁻		B B	J^{π} : E2 γ to J^{π} : E2 γ to	13/2 ⁺ , E0 component γ 5/2 ⁻ , no γ to 3/2 ⁻ .	from $11/2^+$, M1+E2 γ from $9/2^+$.			

Continued on next page (footnotes at end of table)

¹⁹⁷Pb Levels (continued)

E(level) [†]	J ^{<i>π</i>‡}	T _{1/2} #	XR	REF	Comments
1166.66 8	(7/2)-		В		J ^{π} : M1 γ to 5/2 ⁻ , E2 γ to 3/2 ⁻ , (7/2) ⁻ based on ε decay feeding intensity from ¹⁹⁷ Bi ε decay seems to be most
1173.77 <i>12</i> 1295.12 <i>14</i>	9/2 ⁺ 13/2 ⁺ ,15/2 ⁺		B B	Н	J^{π} : E2 γ to 13/2 ⁺ , feeding intensity from ¹⁹⁷ Bi ε decay. J^{π} : M1+E2 γ to 13/2 ⁺ , only 11/2 ⁺ seems from 1624 and the E0+M1+E2 is to 1147.5.
1325.7 ^(a) 24 1401.92 24 1430.51 15 1472.88 12 1495.05 22 1518.79 12 1524.55 12 1525.09 12 1553.85 18 1571.18 14 1577.9 3 1588.02 17 1624.45 14 1633.70 14 1648.9 3 1675.9 3 1686.6 6	$17/2^{+}$ $15/2^{+}$ $13/2^{+}$ $(7/2)^{-}$ $3/2^{-},5/2^{-},7/2^{-}$ $9/2^{+}$ $7/2^{+}$ $(5/2,7/2)^{-}$ $-$ $(9/2)^{-}$ $11/2^{+},13/2^{+},15/2^{+}$ $11/2^{+},13/2^{+}$ $3/2^{-},5/2^{-},7/2^{-}$ $5/2^{-}$ $17/2^{+}$ $2,0^{+},5/2^{+},7/2^{+}$		B B B B B B B B B B B B B B B B B B B	GHI H	L (<i>μ</i>) H (<i>μ</i>) H (<i>μ</i>) H (<i>μ</i>) S (<i>μ</i>) A (<i>μ</i>)
1689.1 3 1730.0 4 1739.91 20 1748.9 4 1770.3 8 1773.56 15 1850.1 8 1856.55 25	3/2 ⁺ ,5/2 ⁺ ,7/2 ⁺ 9/2 ⁺ ,11/2 ⁺ ,13/2 ⁺ 15/2 9/2 ⁺ 15/2 15/2 ⁺ ,17/2 ⁺ ,19/2 ⁺		B B B B	H H GHI	J^{π} : E1 γ to 5/2 ⁻ . J^{π} : M1 γ to 11/2 ⁺ . J^{π} : $\Delta J=1 d \gamma$ to 13/2 ⁺ . J^{π} : E0 component γ to 9/2 ⁺ . J^{π} : M1+E2 $\gamma(\theta)$ to 17/2 ⁺ and E2 $\gamma(\theta)$ to 15/2 ⁺ in (HI,xn γ).
1881.9 ^{(0} 3) 1914.10 25	21/2 ⁺ 21/2 ⁻	1.15 μs 20		GHI GHI	J ^π : E2 γ(θ) to 17/2 ⁺ in (HI,xnγ), ΔJ=2 band member. μ=-0.531 6(2001StZZ) J ^π : M2+E3 γ to 17/2 ⁺ , systematics with 21/2 ⁻ isomers excited in ¹⁹⁵ Pb and ¹⁹⁹ Pb at 1756-keV and 2126-keV, respectively. T _{1/2} : from γ(t) (1985St16). Others: ≈0.7 μs (1978Ri01), 0.47 μs 7 (1985Pa22,1984AIZA), 1.5 μs 2 (1977He06,1981He07), 1.5 μs (1978SaZE). μ: From g=-0.0506 6 (1985St16). μ: others: -0.531 7 (1989Ra17,1985St16).
1922.06 <i>13</i> 1946.07 <i>21</i> 1985.40 <i>23</i> 2024.3 <i>4</i> 2059.3 <i>3</i>	(5/2,7/2,9/2) ⁺ 11/2 ⁺		B B B B B		J^{π} : E1 γ to $(7/2)^{-}$. J^{π} : E0 component γ to $11/2^{+}$, M1 γ to $9/2^{+}$.
2064.2 <i>3</i> 2200.54 <i>21</i> 2297.4 <i>8</i> 2301.1 <i>3</i>	21/2 ⁺ 13/2 ⁺ 19/2 ⁺ (23/2) ⁻		В	GHI H GHI	J^{π} : E2 $\gamma(\theta)$ to 17/2 ⁺ in (HI,xn γ). J^{π} : E0 component γ to 13/2 ⁺ . J^{π} : E2 γ to 15/2 ⁺ and D γ to 17/2 ⁺ . J^{π} : M1 γ to 21/2 ⁻ , systematics in ¹⁹⁹ Pb and ¹⁹⁵ Pb, weak-coupling model calculations (1985Pa22)
2350.9 7 2392.7 <i>3</i>	19/2 ⁺ (25/2) ⁻			H GH	J^{π} : M1 γ to (23/2) ⁻ , weak-coupling model calculations

Continued on next page (footnotes at end of table)

¹⁹⁷Pb Levels (continued)

E(level) [†]	Jπ‡	$T_{1/2}^{\#}$	XREF	Comments
				(1985Pa22).
2467.2 8	$17/2^+, 21/2^+$		Н	J^{π} : E2 γ to $17/2^+$ and D γ from $21/2^+$.
2473.6 <i>3</i>	$(27/2)^{-}$		GHI	J ^{π} : M1 γ to (25/2) ⁻ , weak-coupling calculations (1985Pa22).
2653.6 3	$(25/2)^+$		GH	J^{π} : E2 γ 's to 21/2 ⁺ , weak-coupling calculations (1985Pa22).
2689.8 7	$21/2^{+}$		Н	J^{π} : E2 γ to 17/2 ⁺ and D γ to 21/2 ⁺ . Feeding of 21/2 ⁺ , 2064, suggests
				J(2690) can not be less than $21/2$.
2691.4 4	(23/2)		G	J^{π} : γ to $21/2^+$, γ to $17/2^+$, systematics analysis.
2724.4 7	23/2		Н	J^{π} : M1 γ from 25/2 ⁺ .
2851.2 8	25/2+		Н	J^{π} : E2 γ to 21/2 ⁺ and D γ to 25/2 ⁺ . Feeding of 25/2 ⁺ ,2653, suggests J(2851) can not be less than 25/2.
3080.2 <i>3</i>	$(29/2)^+$		GHI	J^{π} : E1 $\gamma(\theta)$ to $(27/2)^-$ in (HI,xn γ), E2 γ to $(25/2)^+$.
3097.5 9	23/2,27/2		Н	J^{π} : D γ to 25/2 ⁺ .
3168.9 <i>3</i>	$(33/2)^+$	55 ns 5	GHI	$\mu = -2.51 \ 10 \ (2001 \text{StZZ}, 1989 \text{Ra}17, 1985 \text{St}16)$
				J^{π} : E2 to $(29/2)^+$, weak-coupling model calculations (1985Pa22).
				$T_{1/2}$: from γ (t) measurement (1985Pa22,1984AlZA,1978Ri01).
				Others: 75 ns 25 (1986Pa16), 56 ns 8 (from $B(E2)(33/2^+)$ to
				$29/2^+$)=159.5 <i>142</i> , 1986Pa16).
				μ =-2.51 10 (1989Ra17,1985St16) from g=-0.152 6 in ¹⁹⁸ Hg(³ He,
				$4n\gamma$); compared to $-2.508\ 50$ for ¹⁹⁹ Pb standard
				(1989Ra17, 1985St16), -2.442 83 for ²⁰⁵ Pb standard (1989Ra17).
3266.2 11	23/2,27/2		Н	J^{π} : d γ to 25/2 ⁺ .
3283.7 <mark>5</mark> 8	$(27/2^{-})$		Н	J^{π} : 23/2 ⁻ ,27/2 ⁻ from E1 γ to 25/2 ⁺ ,2851. (27/2) from similarity to
				band 1 in ¹⁹⁹ Pb(1994Ba43).
3313.2 11	$(29/2^+)$		Н	J^{π} : $\gamma(\theta)$ to $(25/2)^+$. $(29/2^+)$ from syst of ¹⁹⁷ Pb, ¹⁹⁹ Pb and ²⁰¹ Pb
				and weak-coupling model.
3426.5 11	29/2		Н	J^{π} : D γ to 27/2.
3436.3 ^ƒ 9	29/2-	0.76 ps 21	Н	J^{π} : M1 γ to (27/2 ⁻).
3706.9 ^f 9	$31/2^{-}$	0.49 ps 13	Н	J^{π} : M1 γ to 29/2 ⁻ ,3436.
3756.0 11	33/2+	-	GH	J^{π} : E2 γ' s to 29/2 ⁺ .
3768.4 11	31/2		Н	J^{π} : d γ' s to 29/2.
4024.5 13	31/2		Н	J^{π} : E2 γ to 27/2.
4058.3 15			Н	
4066.0 9	33/2-	0.42 ps 11	Н	J^{π} : M1 γ 31/2 ⁻ and E2 γ to 29/2 ⁻ .
4081.8 11	33/2+		Н	J^{π} : E2 γ to 29/2 ⁻ .
4182.0 12	33/2		Н	J^{n} : γ to 29/2.
4435.9 ^J 9	35/2-	0.34 ps 11	Н	J^{π} : E2 γ to 29/2 and M1 γ 31/2.
4496.9 12	35/2		Н	J^{π} : γ to 31/2 and 33/2.
4581.1 14	33/2		Н	J^{π} : d γ to 31/2.
46/7.0 13	35/2		H	J^{π} : E2 γ to 31/2.
4/94.68 11	37/2*		Н	$J^{*}: E2 \gamma \text{ to } 33/2^{+}.$
4820.9 9	37/2-	0.7 ps 4	Н	J^{π} : E2 γ to 33/2 ⁻ and M1 γ 35/2 ⁻ .
4907.08 12	39/2+		Н	$J^{n}: M1 \gamma 37/2^{+}.$
4911.9 <i>12</i>	31/2		H	I^{π} M1 20/2+
5058.58 12	41/2		н	J^{*} : MI $\gamma = 59/2^{\circ}$.
5180.1^{5} 9	39/2		н	J^{T} : E2 γ to 35/2 and M1 γ 37/2.
5232.9 ¹⁰ 13	39/2		H	J^{**} : d for $\gamma / 3/2$.
$5236.9^{\circ} 12$	$(+3/2)^{+}$		н	J . WI $\gamma 41/2$.
5395.5" 13	41/2(1)		Н	$J'': M1 \gamma 39/2^{+7}$.
5479.9 ^J 9	$41/2^{-}$	0.46 ps 14	Н	J^{n} : E2 γ to $37/2^{-}$ and M1 γ 39/2 ⁻ .
5525.6 ⁸ 12	45/2		Н	J^{**} M1 γ 45/2 ⁺ .
5614.3 ["] 13	43/2(+)		Н	J^{n} : M1 γ 41/2 ⁽⁺⁾ .
5680.8 9	41/2		Н	

¹⁹⁷Pb Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
5707.5^{f} 9	$43/2^{-}$	0.55 ps 21	н	J^{π} : E2 γ to 39/2 ⁻ and M1 γ to 41/2 ⁻ .
5862.3 ⁸ 12	$47/2^+$	0.118 ps 21	н	J^{π} : M1 γ to $45/2^+$.
5879.0 ^h 13	$45/2^{(+)}$	1	н	J^{π} : M1 γ to 43/2 ⁽⁺⁾ .
5952.9f 10	45/2-		н	I^{π} : F2 v to $41/2^{-}$ and M1 v $43/2^{-}$
5997.4 9	$43/2^{-}$		н	J^{π} : E2 γ to 39/2 ⁻ and d γ to 41/2.
6014.0 ^{<i>i</i>} 11	$43/2^{-}$		н	J^{π} : Magnetic-rotational band based on $43/2-(2001Go06)$.
6195.6 ^h 13	$47/2^{(+)}$		н	J^{π} : M1 γ to $45/2^{(+)}$
6202.2^{i} 10	45/2-		н	I^{π} : M1 γ to $43/2^{-1}$
$6238 1^{f} 10$	47/2-	0.277 ps. 14	н	I^{π} : E2 γ to 43/2 ⁻ and M1 γ to 45/2 ⁻
6263.1^{j} 10	$45/2^{(+)}$	0.2// p5 1/	н	I^{π} : (F1) γ to 43/2
6266.2 ⁸ 12	$49/2^+$	0.090 ps + 21 - 14	н	J^{π} : E2 γ to 45/2 ⁺ and M1 γ to 47/2 ⁺ .
6408.1 ^{<i>i</i>} 10	47/2-	1	н	J^{π} : M1 γ to 45/2 ⁻ .
6518.4 ^j 10	$47/2^{(+)}$		н	J^{π} : M1 γ to $45/2^{(+)}$.
6558.9 ^h 14	$49/2^{(+)}$		н	I^{π} : M1 γ to $47/2^{(+)}$
$6565.3f_{10}$	49/2-	0.201 ps + 21 - 14	н	I^{π} : E2 γ to 45/2 ⁻ and M1 γ to 47/2 ⁻
6659.6^{i} 10	$49/2^{-}$	0.201 p5 121 17	н	I^{π} : M1 γ to $47/2^{-1}$
6712.3^{8} 12	$51/2^+$	0.111 ps <i>14</i>	н	J^{π} : E2 γ to 47/2 ⁺ and M1 γ to 49/2 ⁺ .
6807.0 ^j 11	$49/2^{(+)}$	I I	н	J^{π} : M1 γ to $47/2^{(+)}$.
6904.1^{f} 10	$51/2^{-}$	0.118 ps + 21 - 14	н	J^{π} : M1 γ to 49/2 ⁻ and E2 γ to 47/2 ⁻ .
6912.7 ^h 14	$51/2^{(+)}$	····· P· ··· ··	н	I^{π} : M1 γ to $49/2^{(+)}$
$6993.7^{i}.10$	$51/2^{-}$		н	I^{π} : M1 γ to $49/2^{-1}$
$71477^{j}11$	$51/2^{(+)}$		н	I^{π} : M1 γ to $49/2^{(+)}$
7179.4 ⁸ 12	$53/2^+$	0.19 ps 4	н	J^{π} : E2 γ to 49/2 ⁺ and M1 γ to 51/2 ⁺ .
7257.4 ^f 10	53/2-	0.118 ps + 14 - 7	н	J^{π} : E2 γ to 49/2 ⁻ and M1 γ to 51/2 ⁻ .
7286.5 ^h 13	$53/2^{(+)}$	1	н	J^{π} : M1 γ to 51/2 ⁽⁺⁾ .
7407.0^{i} 10	53/2-		н	J^{π} : M1 γ to 51/2 ⁻ .
7551.3 ^j 12	$53/2^{(+)}$		н	J^{π} : M1 γ to $51/2^{(+)}$
7613.1 ⁸ 12	$55/2^+$		H	J^{π} : E2 γ to 51/2 ⁺ and M1 γ to 53/2 ⁺ .
7660.2 ^{<i>f</i>} 10	55/2-		Н	J^{π} : E2 γ to 51/2 ⁻ and M1 γ to 53/2 ⁻ .
7677.5 ^h 13	55/2(+)		Н	J^{π} : M1 γ to 53/2 ⁽⁺⁾ .
7859.9 ⁱ 10	55/2-		н	J^{π} : E2 γ to 51/2 ⁻ and M1 γ to 53/2 ⁻ .
7984.5 ⁸ 13	57/2+		Н	J^{π} : M1 γ to 55/2 ⁺ .
8015.9 <i>j</i> 12	55/2(+)		Н	J^{π} : E2 γ to 51/2 ⁽⁺⁾ and M1 γ to 53/2 ⁽⁺⁾ .
8067.8 ^h 14	$57/2^{(+)}$		Н	J^{π} : M1 γ to 55/2 ⁽⁺⁾ .
8120.5 ^{<i>f</i>} 10	57/2-		Н	J^{π} : E2 γ to 53/2 ⁻ and M1 γ to 55/2 ⁻ .
8353.1 ⁱ 10	57/2-		Н	J^{π} : E2 γ to 53/2 ⁻ and M1 γ to 55/2 ⁻ .
8372.1 <mark>8</mark> 13	59/2+		Н	J^{π} : M1 γ to 57/2 ⁺ .
8438.7 ^h 16	59/2(+)		Н	J^{π} : M1 γ to 57/2 ⁽⁺⁾ .
8520.1 <i>^j 12</i>	57/2(+)		Н	J^{π} : E2 γ to 55/2 ⁽⁺⁾ and M1 γ to 57/2 ⁽⁺⁾ .
8635.5 ^f 11	59/2-		Н	J^{π} : E2 γ to 55/2 ⁻ and M1 γ to 57/2 ⁻ .
8794.7 <mark>8</mark> 14	$61/2^+$		Н	J^{π} : M1 γ to 59/2 ⁺ .
8830.5 ^h 17	$61/2^{(+)}$		Н	J^{π} : M1 γ to 59/2 ⁽⁺⁾ .
8878.5 ⁱ 12	59/2-		Н	J^{π} : M1 γ to 57/2 ⁻ .
9041.9 ^j 15	59/2 ⁽⁺⁾		Н	J^{π} : M1 γ to 57/2 ⁽⁺⁾ .
9198.0 ^f 11	61/2-		Н	J^{π} : E2 γ to 57/2 ⁻ and M1 γ to 59/2 ⁻ .
9246.4 <mark>8</mark> 15	$63/2^+$		Н	J^{π} : M1 γ to 61/2 ⁺ .
9441.4 ¹ 13	$61/2^{-}$		Н	J^{π} : M1 γ to 59/2 ⁻ .

¹⁹⁷Pb Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
9581.8 ^j 17	$61/2^{(+)}$	Н	J^{π} : M1 γ to 59/2 ⁽⁺⁾ .
9723.5 ^g 17	$65/2^+$	Н	J^{π} : M1 γ to 63/2 ⁺ .
9793.9 ^f 11	63/2-	Н	J^{π} : E2 γ to 59/2 ⁻ and M1 γ to 61/2 ⁻ .
10023.3 ⁱ 15	63/2-	Н	J^{π} : M1 γ to 61/2 ⁻ .
10405.5 ^f 12	$65/2^{-}$	Н	J^{π} : E2 γ to $61/2^{-}$ and M1 γ to $63/2^{-}$.
x ^a	J≈(9/2 ⁻)	J	
56.8+x ^{&} 10	J+1	J	
$123.0+x^{a}$ 5	J+2	J	
199.4+x ^{&} 9	J+3	J	
$286.7 + x^{a}$ 7	J+4	J	
383.1+x & 8	J+5	J	
$491.3 + x^{a} 8$	J+6	J	
607.1+x ^{&} 9	J+7	J	
$736.3 + x^{a} 9$	J+8	J	
871.1+x ^{<i>x</i>} 9	J+9	J	
$1022.8 + x^{a} 9$	J+10	J	
$1175.4 + x^{\infty} 10$	J+11]	
1350.1+x ^a 10	J+12	J	
$1519.6 + x^{\circ}$ 11	J+13	J	
1/18./+X ^a 11	J+14	J	
$1903.5 + x^{\circ} 12$	J+15	J	
$2128.4 + X^{*} I2$	J+10	J	
$2326.8 + x^{\circ} 13$	$J+1^{7}$	J	
$2379.4 \pm x^{-1}$	J+18	J	
$2/89.4 + x^{-2}$ 14 $3071.3 + x^{a}$ 14	J+19 I+20	J	
$30/1.5 \pm x \sqrt{8}$ 15	J+20 L+21	J 1	
$3290.0+x^{a}$ 15 3603 8+x ^a 15	J+21 I+22	J 1	
$3831.0+x^{\&}.16$	I+22	1	
$4176.5 + x^{a}$ 16	J+23 J+24	5	
$4409.6 \pm x^{\&} 17$	I+25	1	
$4789.8 + x^{a}$ 17	J+25 J+26	3	
$5026.5 + x^{\&} 17$	I+27	1	
$5442.6 + x^a$ 18	J+28	J	
5681.0+x ^{&} 18	J+29	J	
6134.7+x ^{<i>a</i>} 19	J+30	J	
6373.2+x ^{&} 19	J+31	J	
6865.9+x ^a 20	J+32	J	
7103.0+x ^{&} 21	J+33	J	
7635.4+x ^a 22	J+34	J	
7869.8+x ^{&} 22	J+35	J	
8442.6+x ^{<i>a</i>} 23	J+36	J	
8672.9+x ^{&} 24	J+37	J	
y ^b	J1≈(17/2)	J	
200.1+y ^b 8	J1+2	J	
440.9+y ^b 12	J1+4	J	

E(level) [†]	Jπ‡	XREF	E(level) [†]	Jπ‡	XREF
722.2+y ^b 13	J1+6	J	517.2+u? d 10	J3+4	J
1043.4+y ^b 15	J1+8	J	839.7+u? ^d 11	J3+6	J
1404.8+y ^b 16	J1+10	J	1204.2+u? ^d 13	J3+8	J
1805.9+y ^b 17	J1+12	J	1609.9+u? ^d 14	J3+10	J
$2246.4 + v^{b}$ 18	J1+14	J	2055.7+u? ^d 16	J3+12	J
$2725.7 + v^{b}$ 19	J1+16	3	$2541.4 + u?^{d}$ 17	J3+14	-
3243.8+v ^b 21	J1+18	3	$3066.5 + u?^{d}$ 18	J3+16	-
$3800.8 + v^{b} 22$	J1+20	1	$3629.7 + 11?^{d}$ 19	J3+18	1
$4395 1 + y^{b} 23$	I1+20 I1+22	1	$4230 4 + u^{2d} 20$	I3+20	1
$5026.4 + v^{b} 24$	J1+22	1	$4867.1 + u?^{d} 21$	J3+20 J3+22	1
$5695 + v^{b}$ 3	I1+26	1	$5537 2 + u^{2d} 21$	13+24	1
$6399 + y^{b} = 3$	11+28 11+28	1	6238.7 ± 112^{d} 23	13+26	1
	$12 \sim (10/2)$	3	$6071.5 \pm u^{2d}.24$	13+28	1
$2218 \pm 7^{\circ}5$	$J_{2} \sim (19/2)$ I_{2+2}	J 1	v? ^e	$J_{3\pm 20}$ $I_{4\approx (17/2)}$	1
$483.6+7^{\circ}$ 7	12+2 12+4	J 1	$215.8 \pm v^{2}$	$J_{4} \sim (17/2)$ I_{4+2}	1
$785.3 + 7^{\circ} 9$	I2+6	1	$475 4 + v^{2} 7$	I4+4	1
$1125.9 + z^{c} 10$	12+8	1	$778.0+v^{2}$ 9	I4+6	1
$1506.6 + z^{c} 12$	I_{2+10}	1	$1122.6 \pm v^{2}$ 10	I4+8	1
$1926.0+z^{c}$ 13	J_{2+12}	1	$1508.9 + v^{2e} 12$	J4+10	1
$2384.6 + z^{C} 14$	J2+14	j	1934.6+v? ^e 13	J4+12	j
$2882.4 + z^{c}$ 15	J2+16	j	2401.5+v? ^e 14	J4+14	j
3418.0+z ^c 15	J2+18	j	2907.6+v? ^e 15	J4+16	j
3991.4+z ^c 16	J2+20	J	3453.7+v? ^e 16	J4+18	J
4601.8+z ^c 17	J2+22	J	4036.9+v? ^e 17	J4+20	J
5249.9+z ^c 18	J2+24	J	4656.5+v? ^e 18	J4+22	J
5934.0+z ^c 19	J2+26	J	5311.5+v? ^e 18	J4+24	J
6654.5+z ^c 21	J2+28	J	5999.0+v? ^e 20	J4+26	J
u? ^d	J3≈(19/2)	J	6716.7+v? ^e 22	J4+28	J
237.5+u? d 7	J3+2	J			

¹⁹⁷Pb Levels (continued)

[†] For the states connecting γ' s the E(level) are from level scheme and a least-squares fit to $E\gamma'$ s.

[‡] From band structure analysis(see ${}^{186}W({}^{18}O,7n\gamma)$:SD),except as noted.

[#] From 2001Co19, except as noted.

[@] Band(A): $\Delta J=2$ high-spin band corresponding to ¹⁹⁸Pb g.s. band.

[&] Band(B): SD band 1 (1996Hi13,2000Bu28,2001Pr06). Configuration= $\nu_{15/2}5/2[752]$, $\alpha = -1/2$ (2000Bu28). Population intensity $\approx 0.2\%$ of ¹⁹⁷Pb reaction channel (2000Bu28). ^{*a*} Band(b): SD band 2 (1996Hi13,2000Bu28,2001Pr06). Configuration= $vj_{15/2}5/2[752]$, $\alpha = +1/2$ (2000Bu28). Population intensity

0.1% of ¹⁹⁷Pb reaction channel (2001Pr06).

^b Band(C): SD band 3 (2001Pr06), $\alpha = +1/2$. Population intensity=27% 2 of SD band 1, or 0.054% of reaction channel.

^c Band(c): SD band 4 (2001Pr06), $\alpha = -1/2$. SD band 3 and SD band 4 bands are possible signature partners. Population intensity=27% 2 of SD band 1, or 0.054% of reaction channel.

^d Band(D): SD band 5 (2001Pr06). Population intensity=9% 2 of SD band 1, or 0.018% of reaction channel. Very weak band, tentatively assigned to ¹⁹⁷Pb.

^e Band(d): SD band 6 (2001Pr06). SD band 5 and SD band 6 bands are possible signature partners. Population intensity=9% 2 of SD band 1, or 0.018% of reaction channel. Very weak band, tentatively assigned to ¹⁹⁷Pb.

^f Band(E): Magnetic-rotational band 1, based on 27/2-(1995Ba35,2001Go06).

¹⁹⁷Pb Levels (continued)

^g Band(F): Magnetic-rotational band 2, based on 37/2+(1995Ba35,2001Go06).

^h Band(G): Magnetic-rotational band 3, based on $39/2^{(+)}(1995Ba35,2001Go06)$.

^{*i*} Band(H): Magnetic-rotational band 4, based on 43/2–(2001Go06).

^{*j*} Band(I): Magnetic-rotational band 5, based on $45/2^{(+)}(2001\text{Go06})$.

$\gamma(^{197}\text{Pb})$

All data are from 176 Yb(26 Mg,5n γ), 154 Sm(48 Ca, 5n γ), except as noted.

E_i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{a}	E_f	\mathbf{J}_f^π	Mult. ^{&}	δ	α ^C	Comments
84.88	5/2-	84.9 [†] 1	100 [†]	0.0	3/2-	M1 [†]		2.92	α (L)=2.23; α (M)=0.523; α (N+)=0.171
319.31	13/2+	234.4 [†] <i>1</i>	100 [†]	84.88	5/2-	M4 [†]		62.2	B(M4)(W.u.)=2.9 4 α (K)=22.7 7; α (L)=28.4 9; α (M)=8.3 3; α (N+)=2.86 9 Additional information 1.
952.04	7/2-	867.2 [†] 1	100 [†] 1	84.88	5/2-	M1 [†]		0.0270	$\alpha(K)=0.0221$ 7; $\alpha(L)=0.00367$ 11
		952.1 [†] 3	9.6 [†] 5	0.0	3/2-	E2 [†]		0.00741	α(K)=0.00586 18; α(L)=0.00117 4
988.95	3/2-,5/2-	904.5 d† 3	11.2 ^{d†} 12	84.88	5/2-	M1 [†]		0.0242	α(K)=0.0198 6; α(L)=0.00329 10
		988.9 [†] 1	$100^{\dagger} 2$	0.0	3/2-	E2+M1 [†]		0.013 7	$\alpha(K)=0.011$ 6; $\alpha(L)=0.0018$ 8
1015.34	$(5/2,7/2)^{-}$	930.5 [†] <i>3</i>	96 [†] 12	84.88	$5/2^{-}$	†			
		1015.3 [†] 3	100 12	0.0	3/2-	†			
1079.39	$(7/2, 9/2)^{-}$	994.5 [†] 1	100	84.88	5/2-	E2 [†]		0.00681	$\alpha(K)=0.00540$ 17; $\alpha(L)=0.00106$ 4
1089.41	5/2-	1004.5 [†] 1	100 2	84.88	5/2-	E2 [†]		0.00668	$\alpha(K)=0.00530 \ 16; \ \alpha(L)=0.00103 \ 3$
		1089.4 <i>1</i>	34 1	0.0	3/2-	E2+M1		0.010 5	$\alpha(K)=0.008$ 4; $\alpha(L)=0.0014$ 6
1147.49	$11/2^+$	828.2 1	100	319.31	$13/2^{+}$	E2		0.0098	$\alpha(K)=0.00762\ 23;\ \alpha(L)=0.00163\ 5$
1164.88	(9/2)-	1080.0 [†] 1	100	84.88	5/2-	E2 [†]		0.00580	$\alpha(K)=0.00463$ 14; $\alpha(L)=0.00088$ 3
1166.66	$(7/2)^{-}$	1081.7 [†] <i>1</i>	47.3 [†] 11	84.88	5/2-	M1 [†]		0.0153	$\alpha(K)=0.0125 4; \alpha(L)=0.00207 7$
		1166.7 [†] <i>1</i>	100 2	0.0	3/2-	E2		0.00500	$\alpha(K)=0.00402$ 12; $\alpha(L)=0.00074$ 2
1173.77	9/2+	854.5 1	100	319.31	$13/2^{+}$	E2		0.0092	$\alpha(K)=0.00719$ 22; $\alpha(L)=0.00151$ 5
1295.12	13/2+,15/2+	975.7 1	100	319.31	$13/2^{+}$	E2+M1		0.013 7	$\alpha(K)=0.011$ 6; $\alpha(L)=0.0019$ 8
1325.7	17/2+	1006.2 [‡] 1	100 [‡]	319.31	13/2+	E2 [‡]		0.00665	$\alpha(K)=0.00528 \ 16; \ \alpha(L)=0.00103 \ 3 \ \alpha(K)\exp=0.00529 \ 60, \ \alpha(L1+L2)\exp=0.00119 \ 20. \ \gamma(\theta): \ A_2=+0.122 \ 52, \ A_4=-0.021 \ 42.$
1401.92	15/2+	1082.3 [‡] 1	100‡	319.31	13/2+	E2(+M1)	≥2.7	0.0063 6	α (K)=0.0051 5; α (L)=0.00094 8 Additional information 2. α (K)exp=0.00489 70, α (L1+L2)exp=0.00114 30.
1430.51	13/2+	1111.2 [†] <i>1</i>	100 [†]	319.31	$13/2^{+}$	E0+M1+E2 [†]		≥0.05	α (K)exp=0.0425 46 α (L)exp=0.0070 11.
1472.88	(7/2)-	520.8 [†] 3	20.3 [†] 14	952.04	7/2-	M1 [†]		0.102	$\alpha(K)=0.0830\ 25;\ \alpha(L)=0.0140\ 5$ $\alpha(K)\exp=0.0948\ 53.$
		1388.0 [†] 1	100 [†] 3	84.88	5/2-	E2 [†]		0.00361	α (K)=0.00293 9; α (L)=0.00051 2 α (K)exp=0.00201 65.
1495.05	3/2-,5/2-,7/2-	405.4 [†] 3	50 [†] 7	1089.41	5/2-	M1 [†]		0.197	$\alpha(K)=0.161$ 5; $\alpha(L)=0.0274$ 9; $\alpha(M)=0.00640$ 20;

From ENSDF

				Adopted Lev	vels, Gammas (cor	tinued)	
				$\gamma(^{11}$	⁹⁷ Pb) (continued)		
E _i (level)	\mathbf{J}_i^π	E_{γ}	I_{γ}^{a}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^{&}	α^{c}	Comments
1495.05	3/2-,5/2-,7/2-	1410.4 [†] 3	100 [†] <i>10</i>	84.88 5/2-	MI [†]	0.00782	α (N+)=0.00208 7 α (K)exp=0.192 33 α (L)exp=0.0229 67. α (K)=0.00642 20; α (L)=0.00105 4 α (K)exp=0.0077 12.
1518.79 1524.55	9/2+	1433.9 [†] <i>1</i> 229.4 [†] <i>3</i>	100 [†] 9.2 [†] 11	84.88 5/2 ⁻ 1295.12 13/2 ⁺ ,15/2 ⁻	+		
1		350.8† <i>1</i> 572.5† <i>1</i>	45.0† <i>15</i> 100 [†] <i>2</i>	952.04 7/2 ⁻	E0+M1+E2 E1+M2 [†]	≥0.6 0.11 <i>11</i>	α (K)exp=0.466 37 α (L)exp=0.0932 78. α (K)=0.09 9; α (L)=0.018 18 α (K)exp=0.0090 11.
1525.09	7/2+	$1205.2^{\dagger} 3$ $377.6^{\dagger} 3$ $1440.2^{\dagger} 1$	$12.2^{\dagger} 11$ $16.2^{\dagger} 19$ $100^{\dagger} 3$	319.31 13/2 ⁺ 1147.49 11/2 ⁺ 84.88 5/2 ⁻	F1 [†]	0.00133	$\alpha(K) = 0.00111.4$; $\alpha(L) = 0.00017.1$
1553.85	(5/2,7/2) ⁻	601.8 [†] 3	$100^{\dagger} 6$	952.04 7/2-	E2 [†]	0.0193	$\alpha(K)=0.001117, \alpha(E)=0.0001717$ $\alpha(K)\exp=0.0014853.$ $\alpha(K)=0.01425; \alpha(L)=0.0038012$ $\alpha(K)\exp=0.019228$
		1469.0 [†] 3 1553.8 [†] 3	43.1 [†] 62 95.4 [†] 62	84.88 5/2 ⁻ 0.0 3/2 ⁻	E2 [†]	0.00238	$\alpha(K)=0.00238 \ 8$ $\alpha(K)=0.00167 \ 75.$
1571.18	_	424.0† <i>3</i> 619.4 [†] <i>3</i>	$6.9^{+}12$ $33.5^{+}12$	1147.49 11/2 ⁺ 952.04 7/2 ⁻	E2+M1 [†]	0.041 24	$\alpha(K)=0.033\ 20;\ \alpha(L)=0.006\ 3$ $\alpha(K)=0.0268\ 31.$
		1251.8 [†] 1	100 [†] 2	319.31 13/2+	E1+M2 [†]	0.013 12	$\alpha(K)=0.011 \ 10; \ \alpha(L)=0.0019 \ 17 \ \alpha(K)\exp=0.00280 \ 37.$
1577.9	(9/2)-	1493.0 [†] 3	100 [†]	84.88 5/2-	E2 [†]	0.00315	$\alpha(K)=0.00256 \ 8; \ \alpha(L)=0.00044 \ 1 \ \alpha(K)\exp=0.0035 \ 10.$
1588.02	11/2+,13/2+,15/2+	292.9 [†] 1	100 [†]	1295.12 13/2+,15/2	+ M1 [†]	0.474	$\alpha(K)=0.387 \ 12; \ \alpha(L)=0.0664 \ 20; \ \alpha(M)=0.0156 \ 5; \ \alpha(N+)=0.00504 \ 16 \ \alpha(K)\exp=0.44 \ 14 \ \alpha(L)\exp=0.0536 \ 68.$
1624.45	11/2+	329.5 [†] 3 450.8 [†] 3	$20^{\dagger} 2$ $30^{\dagger} 2$ $7.1^{\dagger} 17$	1295.12 13/2 ⁺ ,15/2 ⁻ 1173.77 9/2 ⁺	+ E0 - M1 - E2 [†]	>0.6	o(W)own=0.57.20
		477.0 ⁺ 3 1305.1 [†] 1	$100^{\dagger} 2$	319.31 13/2 ⁺	$M1+E2^{\dagger}$	≥0.0 0.007 <i>3</i>	$\alpha(\mathbf{K})\exp=0.57/20.$ $\alpha(\mathbf{K})=0.0055/23; \ \alpha(\mathbf{L})=0.0009/4$ $\alpha(\mathbf{K})\exp=0.00453/54.$
1633.70	11/2+,13/2+	468.9 [†] <i>3</i> 486.0 [†] <i>3</i>	10.7 [†] 11 17 [†] 6	1164.88 (9/2) ⁻ 1147.49 11/2 ⁺			• • •

 $^{197}_{82} \mathrm{Pb}_{115}\text{-}9$

				Ad	opted Levels, Gamn	nas (continued)			
					$\gamma(^{197}\text{Pb})$ (cont	inued)			
E _i (level)	${ m J}^{\pi}_i$	Eγ	I_{γ}^{a}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. ^{&}	δ	α^{c}	Comments
1633.70	11/2+,13/2+	1314.4 [†] <i>1</i>	100 [†] 3	319.31	13/2+	M1 [†]		0.0093	$\alpha(K)=0.00767\ 23;$ $\alpha(L)=0.00126\ 4$ $\alpha(K)=0.00643\ 65.$
1648.9	3/2-,5/2-,7/2-	559.5 [†] 3	100†	1089.41	5/2-	M1+E2 [†]		0.05 3	$\alpha(K)=0.04 \ 3; \ \alpha(L)=0.008 \ 4 \ \alpha(K)=0.0362 \ 82.$
1675.9	5/2-	1591.0 [†] 3	100†	84.88	5/2-	E0+M1+E2 [†]		≥0.02	α (K)exp=0.0163 <i>34</i> α (L)exp=0.00461 <i>7</i> 2.
1686.6	17/2+	256.0 [‡] 362.0 [‡]	18 [‡] 6 93 [‡] 21	1430.51 1325.7	13/2 ⁺ 17/2 ⁺	D^{\ddagger}			
		391.7 [‡]	100 [‡] 19	1295.12	$13/2^+, 15/2^+$				
		1367.3 [‡]	43 [‡] 6	319.31	13/2+	E2 [‡]			
1689.1	3/2+,5/2+,7/2+	1604.2 [†] 3	100	84.88	5/2-	$E1^{\dagger}$			$\alpha(K) \exp = 0.00070 \ 30.$
1730.0		741.0 [†] 3	100	988.95	3/2-,5/2-				
1739.91	9/2+,11/2+,13/2+	566.2 [†] 2	100 [†] 6	1173.77	9/2+				
		592.3 [†] 3	40.3 [†] 60	1147.49	11/2+	$M1^{\dagger}$		0.0724	α (K)=0.0592 <i>18</i> ; α (L)=0.0099 <i>3</i> α (K)exp=0.057 <i>11</i> .
1748.9		575.1 [†] 3	100	1173.77	9/2+				
1770.3	15/2	1451.0 [‡]	100 [‡] 18	319.31	13/2+	D^{\ddagger}			R(DCO)=0.37 13.
1773.56	9/2+	600.0 [†] 3	30.5 [†] 29	1173.77	9/2+	E0+M1+E2 [†]		≥0.09	$\alpha(K) \exp = 0.085 \ 14.$
		626.0 [†] 1	100 [†] 4	1147.49	11/2+	M1+E2 [†]		0.040 23	α (K)=0.032 <i>19</i> ; α (L)=0.006 <i>3</i> α (K)exp=0.0392 <i>88</i> .
		1454.6 [†] 3	25.7 [†] 38	319.31	13/2+				
1850.1	15/2	1530.8 [‡]	100 [‡] 18	319.31	13/2+				R(DCO)=0.29 12.
1856.55	15/2+,17/2+,19/2+	454.3 [‡] 1	16.3 [‡] 3	1401.92	15/2+	E2		0.0375	α (K)=0.0257 8; α (L)=0.0089 3; α (M)=0.00223 7; α (N+)=0.00072 2
		531.6 [‡] 1	100 [‡] 3	1325.7	17/2+	E2+M1	-1.3 +2-3	0.052 6	$\alpha(K)=0.041$ 6; $\alpha(L)=0.0084$ 7
1881.9	21/2+	556.9 [‡] 1	100 [‡]	1325.7	17/2+	E2 [‡]		0.0230	α (K)=0.0167 5; α (L)=0.00475 15
1914.10	21/2-	32.4 [‡] <i>1</i>	6.5 [‡] 35	1881.9	21/2+	(E1)		1.96	α (L)=1.48; α (M)=0.358 B(E1)(W.u.)=1.9×10 ⁻⁷ <i>12</i>
		57.35 [‡] 10	100 [‡] <i>10</i>	1856.55	15/2+,17/2+,19/2+	(E1) [‡]		0.416	α (L)=0.317; α (M)=0.0752; α (N+)=0.0234 B(E1)(W.u.)=5.4×10 ⁻⁷ 13
		589.0 [‡] 2	8.7 [‡] 55	1325.7	17/2+	M2+E3 [‡]	1.4 2	0.107 11	B(M2)(W.u.)=0.00019 14; B(E3)(W.u.)=0.6 5

From ENSDF

					Adopted L	evels, Gammas ((continued)	
					<u> </u>	(continue	<u>d)</u>	
E _i (level)	J_i^π	Eγ	I_{γ}^{a}	E_{f}	J_f^π	Mult. ^{&}	α^{c}	Comments
					<u> </u>			$\alpha(K)=0.077 \ 9; \ \alpha(L)=0.0227 \ 11$ Additional information 3.
1922.06	(5/2,7/2,9/2)+	755.4 [†] 1	100 [†]	1166.66	$(7/2)^{-}$	E1 [†]	0.00423	$\alpha(K)=0.00350 \ 11; \ \alpha(L)=0.00054 \ 2 \ \alpha(K)\exp=0.0032 \ 10.$
1946.07	$11/2^{+}$	650.8 [†] 3	21 [†] 4	1295.12	13/2+,15/2+	E0+M1+E2 [†]	>0.11	$\alpha(K) \exp[=0.11 \ 3.$
		772.1 [†] 3	100†6	1173.77	9/2+	M1 [†]	0.0364	$\alpha(K)=0.0298 \ 9; \ \alpha(L)=0.00496 \ 15 \ \alpha(K)\exp=0.0391 \ 54.$
		1627.1 [†] 3	77 6	319.31	$13/2^{+}$			
1985.40		818.5 [†] 3	92 [†] 17	1166.66	$(7/2)^{-}$			
		1033.6 [†] <i>3</i>	100 [†] 13	952.04	7/2-			
2024.3		1035.3 [†] 3	100 [†]	988.95	3/2-,5/2-			
2059.3		969.9 [†] 3	100 [†]	1089.41	5/2-			
2064.2	$21/2^{+}$	181.8 [‡]	1.7 [‡] 5	1881.9	$21/2^{+}$			
		376.3 [‡]	7.6 [‡] 17	1686.6	17/2+	E2 [‡]	0.0613	α (K)=0.0389 <i>12</i> ; α (L)=0.0168 <i>5</i> ; α (M)=0.00425 <i>13</i> ; α (N+)=0.00137 <i>4</i>
		738.9 [‡] 2	100‡	1325.7	$17/2^{+}$	E2 [‡]	0.0124	$\alpha(K)=0.0095 \ 3; \ \alpha(L)=0.00218 \ 7$
2200.54	13/2+	904.5 ^d † 3	88 ^{d†} 9	1295.12	13/2+,15/2+	$M1^{\dagger}$	0.0242	$\alpha(K)=0.0198$ 6; $\alpha(L)=0.00329$ 10 $\alpha(K)\exp=0.0147$ 16.
		1053.7 [†] 3	55 [†] 9	1147.49	$11/2^{+}$			
		1881.5 [†] 3	100 [†] 9	319.31	13/2+	E0+M1+E2 [†]		α (K)exp=0.0058 11.
2297.4	19/2+	895.7 [‡]	100 [‡] 23	1401.92	15/2+	E2 [‡]		R(DCO)=1.06 20.
		972.8 [‡]	91 [‡] <i>19</i>	1325.7	17/2+	D^{\ddagger}		R(DCO)=0.38 7.
2301.1	(23/2)-	387.0 [‡] 1	100 [‡]	1914.10	21/2-	M1	0.223	α (K)=0.183 6; α (L)=0.0310 10; α (M)=0.00726 22; α (N+)=0.00235 7
2350.9	19/2+	500.8 [‡]	100 [‡] <i>19</i>	1850.1	15/2			R(DCO)=1.05 23.
		580.6 [‡]	94 [‡] 19	1770.3	15/2			R(DCO)=0.94 36.
		949.1 [‡]	88 [‡] 19	1401.92	$15/2^+$			R(DCO)=0.93 20.
2392.7	(25/2)-	91.6 [‡] 1	100‡	2301.1	(23/2) ⁻	M1	12.6	α (K)=10.3 3; α (L)=1.79 6; α (M)=0.419 13; α (N+)=0.138 5
2467.2	17/2+,21/2+	780.6 [‡]	84 [‡] 16	1686.6	17/2+	E2 [‡]	0.0111	α(K)=0.0085 3; α(L)=0.00189 6 R(DCO)=0.92 25.
		1142.6 [‡]	100 [‡] 16	1325.7	17/2+	E2 [‡]	0.00521	α(K)=0.00418 <i>13</i> ; α(L)=0.00077 2 R(DCO)=0.91 <i>13</i> .
2473.6	$(27/2)^{-}$	80.9 [‡] 1	100 [‡] 5	2392.7	$(25/2)^{-}$	D		
	· · ·	172.5 [‡] 2	38 [‡] 3	2301.1	(23/2)-	Q		

$\gamma(^{197}\text{Pb})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	Eγ	I_{γ}^{a}	E_f	J_f^π	Mult.&	α ^{<i>c</i>}	Comments
2653.6	$(25/2)^+$	589.2 [‡] 2	100 [‡] 9	2064.2	21/2+	E2 [‡]	0.0202	$\alpha(K)=0.01485; \alpha(L)=0.0040413$
		772.3 [‡] 3	55 [‡] 9	1881.9	$21/2^+$	E2 [‡]	0.0113	$\alpha(K)=0.0087 \ 3; \ \alpha(L)=0.00194 \ 6$
2689.8	$21/2^{+}$	222.5 [‡]	20 [‡] 9	2467.2	17/2+,21/2+			R(DCO)=1.09 34.
		338.9 [‡]	51 [‡] 12	2350.9	19/2+	M1	0.319	α (K)=0.261 8; α (L)=0.0445 14; α (M)=0.0104 4; α (N+)=0.00337 11 Mult.: From ¹⁷⁶ Yb(²⁶ Mg,5n γ), ¹⁵⁴ Sm(⁴⁸ Ca,5n γ).
		392.4 [‡]	14 [‡] 3	2297.4	19/2+			
		626.8 [‡]	100 [‡] 9	2064.2	$21/2^+$	D^{\ddagger}		R(DCO)=0.94 14.
		808.6 [‡]	48 [‡] 6	1881.9	$21/2^+$	D^{\ddagger}		R(DCO)=1.05 13.
		1003.2 [‡]	48 [‡] 6	1686.6	17/2+	E2 [‡]	0.00669	α(K)=0.00531 <i>16</i> ; α(L)=0.00104 <i>4</i> R(DCO)=1.00 <i>13</i> .
		1365.2‡	9.1 [‡] 12	1325.7	17/2+	E2 [‡]	0.00372	α(K)=0.00302 9; α(L)=0.00053 2 R(DCO)=0.98 16.
2691.4	(23/2)	627.4 [‡] 4	100 [‡] 11	2064.2	$21/2^+$			
		809.2 [‡] 4	56 [‡] 11	1881.9	$21/2^+$			
		1366.3 [‡] 4	17 [‡] 2	1325.7	$17/2^{+}$			
2724.4	23/2	34.6 [‡]	100	2689.8	$21/2^+$			
2851.2	25/2+	126.9 [‡]	100 [‡] <i>13</i>	2724.4	23/2	M1 [‡]	4.94	α (K)=4.03 <i>12</i> ; α (L)=0.698 <i>21</i> ; α (M)=0.164 <i>5</i> ; α (N+)=0.0541 <i>17</i> R(DCO)=0.49 <i>7</i> .
		198.5 [‡]	15 [‡] 5	2653.6	$(25/2)^+$	D^{\ddagger}		R(DCO)=1.12 39.
		788.2 [‡]	25 [‡] 5	2064.2	21/2+	E2 [‡]	0.0108	α(K)=0.0084 3; α(L)=0.00185 6 R(DCO)=0.95 17.
		970.0 [‡]	16 [‡] 3	1881.9	21/2+	E2 [‡]	0.00715	α(K)=0.00566 17; α(L)=0.00112 4 R(DCO)=0.92 16.
3080.2	$(29/2)^+$	426.7 [‡] 2	100	2653.6	$(25/2)^+$	E2 [‡]	0.0440	$\alpha(K)=0.0294 9; \alpha(L)=0.0109 4; \alpha(M)=0.00275 9; \alpha(N+)=0.00088 3$
		606.5 [‡] 1	13.4 [‡] 4	2473.6	$(27/2)^{-}$	D		
3097.5	23/2,27/2	246.3 [‡]	100 [‡] 54	2851.2	$25/2^+$	D^{\ddagger}		R(DCO)=0.63 15.
3168.9	$(33/2)^+$	88.7 1	100	3080.2	(29/2)+	E2	10.8	B(E2)(W.u.)=2.33 23 E_{γ},I_{γ} : From ¹⁸⁶ W(¹⁶ O,5n γ).
3266.2	23/2,27/2	168.7 [‡]	15 [‡] 4	3097.5	23/2,27/2			
		415.0 [‡]	100 [‡] 41	2851.2	$25/2^+$	D^{\ddagger}		R(DCO)=0.56 16.
3283.7	(27/2 ⁻)	186.2 [‡] 3	8.2 [‡] 23	3097.5	23/2,27/2	E1 [‡]	0.094	$\alpha(K)=0.0760$ 23; $\alpha(L)=0.0136$ 4; $\alpha(M)=0.00318$ 10; $\alpha(N+)=0.00101$
								α(K)exp=0.24 <i>19</i> . R(DCO)=1.02 <i>27</i> .
		432.5 [‡] 2	100 [‡] 13	2851.2	25/2+	E1 [‡]	0.0131	$\alpha(K)=0.0108$ 4; $\alpha(L)=0.00176$ 6; $\alpha(M)=0.00041$ 1; $\alpha(N+)=0.00013$

12

						Adopted	Levels, Ga	mmas (continued)
						-	γ(¹⁹⁷ Pb) (α	continued)
E _i (level)	\mathbf{J}_i^π	Eγ	I_{γ}^{a}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^{&}	α^{c}	Comments
								α(K)exp=0.03 2. R(DCO)=0.65 10.
3313.2	(29/2+)	660.4 [‡]	100 [‡] 23	2653.6	$(25/2)^+$	(E2) [‡]	0.0157	α(K)=0.0118 4; α(L)=0.00293 9 R(DCO)=1.01 14.
3426.5	29/2	329.0 [‡]	100 [‡] 17	3097.5	23/2,27/2	D‡		R(DCO)=0.54 17.
3436.3	29/2-	152.6 [‡] 2	100 [‡] <i>11</i>	3283.7	(27/2 ⁻)	M1 [‡]	2.92	α (K)=2.38 8; α (L)=0.412 13; α (M)=0.097 3; α (N+)=0.0319 10 B(M1)(W.u.)=0.75 18 DCO=0.64 9. α (K)exp=2.0 8 α (L)exp=0.56 21.
3706.9	31/2-	270.5 [‡] 2	100 [‡] <i>11</i>	3436.3	29/2-	M1 [‡]	0.590	α (K)=0.482 <i>15</i> ; α (L)=0.0827 <i>25</i> ; α (M)=0.0194 <i>6</i> ; α (N+)=0.00628 <i>19</i> B(M1)(W.u.)=0.37 <i>6</i> DCO=0.62 <i>8</i> . α (K)exp=0.42 <i>10</i> .
3756.0	33/2+	442.4 [‡] <i>4</i> 587.8 676.4	54 [‡] 15 62 10 100 17	3313.2 3168.9 3080.2	$(29/2^+)$ $(33/2)^+$ $(29/2)^+$	E2 [‡]	0.04	$\alpha(K)=0.0271$ 9; $\alpha(L)=0.0097$ 3; $\alpha(M)=0.00242$ 8; $\alpha(N+)=0.00078$ 2
3768.4	31/2	342.0 [‡]	100 [‡] 24	3426.5	29/2	D [‡]		R(DCO)=0.57 19.
	- 1	455.2 [‡]	36 [‡] 9	3313.2	$(29/2^+)$	D [‡]		R(DCO)=0.54 17.
4024.5	31/2	758.3 [‡]	100 [‡] 18	3266.2	23/2,27/2	E2 [‡]	0.0117	α (K)=0.0090 <i>3</i> ; α (L)=0.00204 <i>7</i> R(DCO)=1.19 <i>33</i> .
4058.3		890.1 [‡]	100 [‡] 16	3168.9	$(33/2)^+$			
4066.0	33/2-	359.1 [‡] 2	100 [‡] <i>11</i>	3706.9	31/2-	M1 [‡]	0.273	α (K)=0.223 7; α (L)=0.0380 12; α (M)=0.0089 3; α (N+)=0.00288 9 B(M1)(W.u.)=0.39 9 DCO=0.68 9. α (K)exp=0.14 11.
		629.8 [‡] 3	5.1 [‡] 15	3436.3	29/2-	E2	0.0174	B(E2)(W.u.)=6.1 20 α (K)=0.0130 4; α (L)=0.00334 10
4081.8	33/2+	313.3 [‡]	92 [‡] 27	3768.4	31/2	D^{\ddagger}		R(DCO)=0.57 25.
		768.6 [‡]	100 [‡] 15	3313.2	(29/2 ⁺)	E2 [‡]	0.0114	α (K)=0.0088 3; α (L)=0.00197 6 R(DCO)=0.95 17.
4182.0	33/2	413.6 [‡]	$100^{\ddagger} 24$	3768.4	31/2	D‡		R(DCO)=0.46 20.
4435.9	35/2-	369.8 [‡] 2	100 [‡] 12	4066.0	29/2 33/2 ⁻	M1 [‡]	0.252	α (K)=0.206 7; α (L)=0.0351 11; α (M)=0.00821 25; α (N+)=0.00266 8 B(M1)(W.u.)=0.36 9 DCO=0.64 8. α (K)exp=0.11 11.
		729.0 [‡] 5	11 [‡] 3	3706.9	31/2-	E2 [‡]	0.0127	$\alpha(K)=0.0097 \ 3; \ \alpha(L)=0.00226 \ 7$
					'			

From ENSDF

 $^{197}_{82} \mathrm{Pb}_{115}\text{--}13$

						Adopte	ed Levels,	Gammas (continued)		
	γ ⁽¹⁹⁷ Pb) (continued)									
E _i (level)	\mathbf{J}_i^π	Eγ	I_{γ}^{a}	\mathbf{E}_{f}	J_f^π	Mult. ^{&}	α^{c}	Comments		
								B(E2)(W.u.)=3.3 <i>10</i> DCO=1.2 <i>3</i> .		
4496.9	35/2	314.8 [‡]	80 [‡] 21	4182.0	33/2	D‡		R(DCO)=0.67 28.		
		415.1 [‡]	100 [‡] 38	4081.8	33/2+	D‡		R(DCO)=0.45 11.		
		728.7 [‡]	92 [‡] 13	3768.4	31/2			R(DCO)=0.73 15.		
4581.1	33/2	556.6 [‡]	100 [‡] 50	4024.5	31/2	D [‡]		R(DCO)=0.67 27.		
4677.0	35/2	95.8 [‡]		4581.1	33/2					
		652.4 [‡]	100 [‡] 32	4024.5	31/2	E2 [‡]	0.0161	α (K)=0.0121 4; α (L)=0.00303 10 R(DCO)=1.06 26.		
4794.6	37/2+	117.6 [‡]	37 [‡] 10	4677.0	35/2	D‡		R(DCO)=0.58 28.		
		297.7 [‡]	100 [‡] 24	4496.9	35/2	D‡		R(DCO)=0.61 22.		
		712.6 [‡]	51 [‡] 15	4081.8	33/2+	E2 [‡]	0.0134	R(DCO)=1.10 <i>30</i> .		
		1626.4 [‡]	12 [‡] 5	3168.9	$(33/2)^+$					
4820.9	37/2-	385.0 [‡] 2	100 [‡] 12	4435.9	35/2-	M1 [‡]	0.227	α (K)=0.185 6; α (L)=0.0315 10; α (M)=0.00736 22; α (N+)=0.00239 8 B(M1)(W.u.)=0.33 9 DCO=0.66 8. α (K)exp=0.17 6.		
		754.9 [‡] 2	14 [‡] 3	4066.0	33/2-	E2 [‡]	0.0118	α (K)=0.0091 3; α (L)=0.00206 7 B(E2)(W.u.)=6.3 18 DCO=1.3 3.		
4907.0	39/2+	112.4 [‡] 2	100 [‡] 15	4794.6	37/2+	M1 [‡]	7.00	α (K)=5.70 <i>18</i> ; α (L)=0.99 <i>3</i> ; α (M)=0.232 <i>7</i> ; α (N+)=0.0765 <i>23</i> DCO=0.63 <i>9</i> .		
4911.9	37/2	415.0 [‡] 3	100 [‡]	4496.9	35/2					
5058.3	41/2+	151.3 [‡] 2	100 [‡] 15	4907.0	39/2+	M1 [‡]	2.99	α (K)=2.44 8; α (L)=0.422 13; α (M)=0.099 3; α (N+)=0.0327 10 B(M1)(W.u.)=1.3 7 DCO=0.56 9. α (K)exp=1.7 9.		
5186.1	39/2-	365.2 [‡] 2	100 [‡] <i>12</i>	4820.9	37/2-	M1 [‡]	0.261	α (K)=0.213 7; α (L)=0.0363 11; α (M)=0.0085 3; α (N+)=0.00275 9 B(M1)(W.u.)=0.35 9 DCO=0.64 8. α (K)exp=0.22 15.		
		750.2 [‡] 2	16 [‡] 4	4435.9	35/2-	E2 [‡]	0.0120	α (K)=0.0092 3; α (L)=0.00209 7 B(E2)(W.u.)=4.4 20 DCO=1.1 3.		
5232.9	39/2(+)	321.0 [‡] 5	100 [‡] 43	4911.9	37/2	D‡		DCO=0.61 8.		
5258.9	43/2+	200.6 [‡] 2	100 [‡] 13	5058.3	41/2+	M1 [‡]	1.35	$\alpha(K)=1.10$ 4; $\alpha(L)=0.190$ 6; $\alpha(M)=0.0446$ 14; $\alpha(N+)=0.0146$ 5 B(M1)(W.u.)=1.88 10		

 $^{197}_{82} {\rm Pb}_{115}$ -14

	Adopted Levels, Gammas (continued)								
γ ⁽¹⁹⁷ Pb) (continued)									
E_i (level)	\mathbf{J}_i^{π}	Eγ	Ι _γ <i>α</i>	E_f	\mathbf{J}_f^{π}	Mult.&	α ^{<i>c</i>}	Comments	
								DCO=0.57 6. α(K)exp=1.4 4.	
5395.5	41/2 ⁽⁺⁾	162.7 [‡] 3	100 [‡] 21	5232.9	39/2 ⁽⁺⁾	M1 [‡]	2.44	α(K)=1.99 6; α(L)=0.344 11; α(M)=0.0805 25; α(N+)=0.0265 8 DCO=0.58 7.	
5479.9	41/2-	293.8 [‡] 2	100 [‡] 14	5186.1	39/2-	M1‡	0.470	α (K)=0.384 <i>12</i> ; α (L)=0.0658 <i>20</i> ; α (M)=0.0154 <i>5</i> ; α (N+)=0.00499 <i>15</i> B(M1)(W.u.)=0.62 <i>15</i> DCO=0.64 <i>8</i> . α (K)exp=0.31 <i>18</i> .	
		659.2 [‡] 5	6.3 [‡] 22	4820.9	37/2-	E2 [‡]	0.0158	B(E2)(W.u.)=3.7 <i>16</i> α (K)=0.0118 <i>4</i> ; α (L)=0.00295 <i>9</i>	
5525.6	45/2+	266.7 [‡] 2	100 [‡] <i>13</i>	5258.9	43/2+	M1 [‡]	0.613	α (K)=0.501 <i>15</i> ; α (L)=0.086 <i>3</i> ; α (M)=0.0202 <i>6</i> ; α (N+)=0.00653 <i>20</i> B(M1)(W.u.)=0.870 <i>24</i> DCO=0.53 <i>7</i> . α (K)exp=0.45 <i>11</i> .	
5614.3	43/2 ⁽⁺⁾	218.8 [‡] 3	100 [‡] 17	5395.5	41/2 ⁽⁺⁾	M1 [‡]	1.06	α (K)=0.87 3; α (L)=0.149 5; α (M)=0.0350 11; α (N+)=0.0114 4 DCO=0.63 8.	
5680.8	41/2	494.7 [‡] 2	100 [‡] 14	5186.1	39/2-				
5707.5	43/2-	227.6 [‡] 2	100 [‡] 12	5479.9	41/2-	M1 [‡]	0.95	α (K)=0.776 24; α (L)=0.134 4; α (M)=0.0313 10; α (N+)=0.0102 3 DCO=0.62 9. α (K)exp=0.75 32.	
		521.7 [‡] 5	6.1 [‡] 21	5186.1	39/2-	E2 [‡]	0.0268	α(K)=0.0191 6; α(L)=0.00578 18	
5862.3	47/2+	336.7 [‡] 2	100 [‡] <i>12</i>	5525.6	45/2+	M1‡	0.325	α (K)=0.266 8; α (L)=0.0453 14; α (M)=0.0106 4; α (N+)=0.00343 11 B(M1)(W.u.)=1.5 5 DCO=0.53 7. α (K)exp=0.30 19.	
5879.0	45/2 ⁽⁺⁾	264.7 [‡] 3	100 [‡] 16	5614.3	43/2 ⁽⁺⁾	M1 [‡]	0.626	α (K)=0.511 <i>16</i> ; α (L)=0.088 <i>3</i> ; α (M)=0.0206 <i>7</i> ; α (N+)=0.00667 <i>20</i> DCO=0.61 <i>8</i> .	
5952.9	45/2-	245.4 [‡] 2	100 [‡] 15	5707.5	43/2-	M1 [‡]	0.772	α (K)=0.630 <i>19</i> ; α (L)=0.108 <i>4</i> ; α (M)=0.0254 <i>8</i> ; α (N+)=0.00824 <i>25</i> DCO=0.63 <i>8</i> . α (K)exp=0.54 <i>27</i> .	
		473.2 [‡] 8	2.0 [‡] 9	5479.9	41/2-	E2 [‡]	0.0339	α (K)=0.0235 7; α (L)=0.00782 24; α (M)=0.00195 6; α (N+)=0.00063 2 R(DCO)=0.78 19.	
5997.4	43/2-	316.5 [‡] 3	100 [‡] <i>19</i>	5680.8	41/2	D‡		DCO=0.86 9.	
		517.7 [‡] 8	23 [‡] 6	5479.9	41/2-	M1	0.103	$\alpha(K)=0.084 \ 3; \ \alpha(L)=0.0142 \ 5$	
		811.3 [‡] 5	46 [‡] 11	5186.1	39/2-	E2	0.0102	$\alpha(K)=0.00793\ 24;\ \alpha(L)=0.00172\ 6$	
6195.6	47/2 ⁽⁺⁾	316.6 [‡] 3	100 [‡] <i>19</i>	5879.0	45/2 ⁽⁺⁾	M1 [‡]	0.384	α(K)=0.314 <i>10</i> ; α(L)=0.0536 <i>16</i> ; α(M)=0.0126 <i>4</i> ; α(N+)=0.00406 <i>13</i> DCO=0.56 <i>7</i> .	

 $^{197}_{82} \mathrm{Pb}_{115}\text{--}15$

Adopted Levels, Gammas (continued)									
						$\gamma(^{197}\text{Pb})$) (continued)		
E_i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{a}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^{&}	α ^{<i>c</i>}	Comments		
6202.2	45/2-	188.0 [‡] 5	100 [‡] 20	6014.0 43/2-	M1 [‡]	1.62	$\alpha(K)=1.32$ 4; $\alpha(L)=0.228$ 7; $\alpha(M)=0.0535$ 16; $\alpha(N+)=0.0175$ 6 DCO=0.74 11.		
		204.7 [‡] 5	77 [‡] 20	5997.4 43/2-	M1 [‡]	1.28	α (K)=1.04 4; α (L)=0.180 6; α (M)=0.0421 13; α (N+)=0.0138 5 DCO=0.49 8.		
6238.1	47/2-	285.2 [‡] 2	100 [‡] 15	5952.9 45/2-	M1 [‡]	0.510	α (K)=0.417 <i>13</i> ; α (L)=0.0714 <i>22</i> ; α (M)=0.0167 <i>5</i> ; α (N+)=0.00542 <i>17</i> DCO=0.63 <i>8</i> . α (K)exp=0.37 <i>13</i> .		
		531.0 [‡] 8	3.8 [‡] 18	5707.5 43/2-	E2 [‡]	0.0257	$\alpha(K)=0.0184 \ 6; \ \alpha(L)=0.00548 \ 17$ R(DCO)=0.82 21.		
6263.1	$45/2^{(+)}$	249.5 [‡] 8	20 [‡] 6	6014.0 43/2-	(E1) [‡]	0.0459	$\alpha(K)=0.0375 \ 12; \ \alpha(L)=0.00647 \ 20; \ \alpha(M)=0.00151 \ 5; \ \alpha(N+)=0.00048 \ 2$		
		265.6 [‡] 3	100 [‡] <i>19</i>	5997.4 43/2-	(E1) [‡]	0.0395	α (K)=0.0323 <i>10</i> ; α (L)=0.00554 <i>17</i> ; α (M)=0.00129 <i>4</i> ; α (N+)=0.00041 <i>1</i> DCO=0.74 <i>9</i> .		
6266.2	49/2+	403.9 [‡] 2	100 [‡] <i>11</i>	5862.3 47/2+	M1 [‡]	0.199	α (K)=0.163 5; α (L)=0.0277 9; α (M)=0.00646 20; α (N+)=0.00210 7 B(M1)(W.u.)=1.74 22 DCO=0.56 7. α (K)exp=0.10 7.		
		740.7 [‡] 8	2.7 [‡] 14	5525.6 45/2+	E2 [‡]	0.0123	$\alpha(K)=0.0094 \ 3; \ \alpha(L)=0.00216 \ 7$ R(DCO)=1.1 5.		
6408.1	47/2-	205.8 [‡] 3	100 [‡] 20	6202.2 45/2-	M1 [‡]	1.26	$\alpha(K)=1.03 \ 3; \ \alpha(L)=0.177 \ 6; \ \alpha(M)=0.0415 \ 13; \ \alpha(N+)=0.0136 \ 4$ DCO=0.68 7.		
6518.4	47/2 ⁽⁺⁾	255.3 [‡] 3	100 [‡] 20	6263.1 45/2	⁻⁾ M1 [‡]	0.692	<i>α</i> (K)=0.565 <i>17</i> ; <i>α</i> (L)=0.097 <i>3</i> ; <i>α</i> (M)=0.0227 <i>7</i> ; <i>α</i> (N+)=0.00738 <i>23</i> DCO=0.74 <i>8</i> .		
6558.9	49/2 ⁽⁺⁾	363.3 [‡] 5	100 [‡] 26	6195.6 47/2 ⁽⁴	⁻⁾ M1 [‡]	0.265	α (K)=0.216 7; α (L)=0.0368 11; α (M)=0.0086 3; α (N+)=0.00279 9 DCO=0.57 7.		
6565.3	49/2-	327.2 [‡] 2	100 [‡] 15	6238.1 47/2-	M1 [‡]	0.351	α (K)=0.287 9; α (L)=0.0490 15; α (M)=0.0115 4; α (N+)=0.00371 12 DCO=0.63 8. α (K)exp=0.38 29.		
		612.4 [‡] 5	7 ‡ 3	5952.9 45/2-	E2 [‡]	0.0185	$\alpha(K)=0.0137\ 5;\ \alpha(L)=0.00362\ 11$		
6659.6	49/2-	251.4 [‡] 2	100 [‡] <i>13</i>	6408.1 47/2-	M1 [‡]	0.722	α (K)=0.589 <i>18</i> ; α (L)=0.101 <i>3</i> ; α (M)=0.0237 <i>8</i> ; α (N+)=0.00771 <i>24</i> DCO=0.67 7.		
		421.3 [‡] 5	37 [‡] 10	6238.1 47/2-	M1 [‡]	0.178	$\alpha(K)=0.146$ 5; $\alpha(L)=0.0247$ 8; $\alpha(M)=0.00577$ 18; $\alpha(N+)=0.00187$ 6 DCO=0.70 7.		
6712.3	51/2+	446.1 [‡] 2	100 [‡] <i>15</i>	6266.2 49/2+	M1 [‡]	0.153	α (K)=0.125 4; α (L)=0.0212 7; α (M)=0.00494 15; α (N+)=0.00161 5 B(M1)(W.u.)=2.4 12 DCO=0.54 8. α (K)exp=0.12 7.		
		849.9 [‡] 5	13 [‡] 4	5862.3 47/2+	E2 [‡]	0.0093	$\alpha(K)=0.00726\ 22;\ \alpha(L)=0.00153\ 5$		

Adopted Levels, Gammas (continued)										
	$\gamma(^{197}\text{Pb})$ (continued)									
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{a}	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	α^{c}	Comments		
								B(E2)(W.u.)=27 <i>15</i> DCO=1.1 <i>0.</i> 5.		
6807.0	49/2 ⁽⁺⁾	288.6 [‡] 3	100 [‡] 17	6518.4 4	47/2 ⁽⁺⁾	M1 [‡]	0.494	<i>α</i> (K)=0.403 <i>13</i> ; <i>α</i> (L)=0.0691 <i>21</i> ; <i>α</i> (M)=0.0162 <i>5</i> ; <i>α</i> (N+)=0.00525 <i>16</i> DCO=0.86 8.		
6904.1	51/2-	338.9 [‡] 2	100 [‡] 18	6565.3 4	49/2-	M1 [‡]	0.319	α (K)=0.261 8; α (L)=0.0445 14; α (M)=0.0104 4; α (N+)=0.00337 11 DCO=0.64 9. α (K)exp=0.19 9.		
		666.1 [‡] 8	3.8 [‡] 18	6238.1 4	47/2-	E2 [‡]	0.0154	α(K)=0.0116 4; α(L)=0.00287 9		
6912.7	51/2 ⁽⁺⁾	353.8 [‡] 5	100 [‡] 35	6558.9 4	49/2 ⁽⁺⁾	M1 [‡]	0.284	α (K)=0.232 7; α (L)=0.0396 12; α (M)=0.0093 3; α (N+)=0.00300 9 DCO=0.57 8.		
6993.7	51/2-	334.1 [‡] 2	100 [‡] 25	6659.6 4	49/2-	M1 [‡]	0.332	α (K)=0.271 9; α (L)=0.0462 14; α (M)=0.0108 4; α (N+)=0.00351 11 DCO=0.65 7.		
		428.5 [‡] 3	82 [‡] 10	6565.3 4	49/2-	M1 [‡]	0.170	α(K)=0.139 5; α(L)=0.0236 7; α(M)=0.00551 17; α(N+)=0.00179 6 DCO=0.83 12.		
7147.7	51/2 ⁽⁺⁾	340.7 [‡] 3	100 [‡] 16	6807.0 4	49/2 ⁽⁺⁾	M1 [‡]	0.315	α (K)=0.257 8; α (L)=0.0438 14; α (M)=0.0103 3; α (N+)=0.00332 10 DCO=0.63 8.		
7179.4	53/2+	467.1 [‡] 2	100 [‡] <i>17</i>	6712.3 5	51/2+	M1 [‡]	0.135	α (K)=0.111 4; α (L)=0.0187 6; α (M)=0.00437 14; α (N+)=0.00142 5 B(M1)(W.u.)=1.1 3 DCO=0.63 11.		
		913.3 [‡] 8	12 [‡] 5	6266.2 4	49/2+	E2 [‡]	0.00805	α (K)=0.00634 <i>19</i> ; α (L)=0.00129 <i>4</i> B(E2)(W.u.)=16 <i>5</i> DCO=1.3 <i>0.5</i> .		
7257.4	53/2-	353.3 [‡] 2	100 [‡] 15	6904.1 5	51/2-	M1 [‡]	0.285	α (K)=0.233 7; α (L)=0.0397 12; α (M)=0.0093 3; α (N+)=0.00301 9 DCO=0.63 9. α (K)exp=0.26 15.		
		692.1 [‡] 8	3.7 [‡] 17	6565.3 4	49/2-	E2 [‡]	0.0142	$\alpha(K)=0.0108 \ 4; \ \alpha(L)=0.00259 \ 8$		
7286.5	53/2(+)	373.9 [‡] 8	100 [‡] 47	6912.7 5	51/2 ⁽⁺⁾	M1 [‡]	0.245	α(K)=0.200 6; α(L)=0.0341 11; α(M)=0.00797 24; α(N+)=0.00258 8 DCO=0.52 11.		
7407.0	53/2-	413.2 [‡] 2	100 [‡] 20	6993.7 5	51/2-	M1 [‡]	0.187	α(K)=0.153 5; α(L)=0.0260 8; α(M)=0.00608 19; α(N+)=0.00197 6 DCO=0.78 8.		
		503.2 [‡] 5	14 [‡] 3	6904.1 5	51/2-	M1 [‡]	0.111	$\alpha(K)=0.091 \ 3; \ \alpha(L)=0.0153 \ 5$		
7551.3	53/2(+)	403.6 [‡] 3	100 [‡] <i>19</i>	7147.7 5	51/2 ⁽⁺⁾	M1 [‡]	0.200	α (K)=0.163 5; α (L)=0.0277 9; α (M)=0.00648 20; α (N+)=0.00210 7 DCO=0.64 9.		
7613.1	55/2+	433.7 [‡] 2	100 [‡] 14	7179.4 5	53/2+	M1 [‡]	0.165	α (K)=0.135 4; α (L)=0.0228 7; α (M)=0.00533 16; α (N+)=0.00173 6 DCO=0.58 8.		
		900.6 [‡] 8	8 [‡] 4	6712.3 5	51/2+	E2 [‡]	0.00828	α(K)=0.00651 20; α(L)=0.00133 4 R(DCO)=0.85 32.		

From ENSDF

					Adopt	ed Levels, C	Cammas (continued)
						$\gamma(^{197}\text{Pb})$	(continued)
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{a}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^{&}	α ^{<i>c</i>}	Comments
7660.2	55/2-	402.8 [‡] 2	100 [‡] 14	7257.4 53/2-	M1 [‡]	0.201	$\alpha(K)=0.164\ 5;\ \alpha(L)=0.0279\ 9;\ \alpha(M)=0.00651\ 20;\ \alpha(N+)=0.00211\ 7$ DCO=0.63 10.
		756.0 [‡] 8	6 [‡] 3	6904.1 51/2-	E2 [‡]	0.0118	$\alpha(K)=0.0091 \ 3; \ \alpha(L)=0.00205 \ 7$
7677.5	55/2 ⁽⁺⁾	391.1 [‡] 5	100 [‡] 33	7286.5 53/2(+) M1 [‡]	0.217	α (K)=0.178 <i>6</i> ; α (L)=0.0302 <i>9</i> ; α (M)=0.00705 22; α (N+)=0.00229 7 I _y : Combined for 390.2+391.1+391.8 DCO=0.59 <i>9</i> for 390.2+391.1+391.8.
		498.1 [‡] 5	86 [‡] 28	7179.4 53/2+	(M1) [‡]	0.114	$\alpha(K)=0.093 \ 3; \ \alpha(L)=0.0157 \ 5; \ \alpha(M)=0.00368 \ 11; \ \alpha(N+)=0.00120 \ 4 \ DCO=0.49 \ 11.$
7859.9	55/2-	452.9 [‡] 2	100 [‡] 17	7407.0 53/2-	M1 [‡]	0.147	α (K)=0.120 4; α (L)=0.0203 6; α (M)=0.00475 15; α (N+)=0.00155 5 DCO=0.81 12.
		866.1 [‡] 8	13 [‡] 4	6993.7 51/2-	E2 [‡]	0.0090	$\alpha(K)=0.00700\ 21;\ \alpha(L)=0.00146\ 5$
7984.5	57/2+	371.4 [‡] 2	100 [‡] 24	7613.1 55/2+	M1 [‡]	0.249	α (K)=0.204 7; α (L)=0.0347 11; α (M)=0.00812 25; α (N+)=0.00263 8 B(M1)(W.u.)=1.4 5 DCO=0.59 6.
8015.9	55/2 ⁽⁺⁾	464.6 [‡] 3	100 [‡] <i>19</i>	7551.3 53/2(+) M1 [‡]	0.137	α (K)=0.112 4; α (L)=0.0190 6; α (M)=0.00443 14; α (N+)=0.00144 5 DCO=0.64 9.
		868.2 [‡] 8	6.4 [‡] 24	7147.7 51/2(+) E2 [‡]	0.0089	$\alpha(K)=0.00697\ 21;\ \alpha(L)=0.00146\ 5$
8067.8	57/2 ⁽⁺⁾	390.2 [‡] 5	100 [‡] <i>33</i>	7677.5 55/2 ⁽⁺) M1 [‡]	0.219	α (K)=0.179 6; α (L)=0.0304 10; α (M)=0.00710 22; α (N+)=0.00230 7 I _{γ} : Combined for 390.2+391.1+391.8 \$ DCO=0.59 9 for 390.2+391.1+391.8
8120.5	57/2-	460.3 [‡] 2	100 [‡] 17	7660.2 55/2-	M1 [‡]	0.141	$\alpha(K)=0.115$ 4; $\alpha(L)=0.0194$ 6; $\alpha(M)=0.00454$ 14; $\alpha(N+)=0.00148$ 5 DCO=0.65 11.
		862.8 [‡] 8	8 [‡] 4	7257.4 53/2-	E2 [‡]	0.0090	α(K)=0.00705 22; α(L)=0.00148 5
8353.1	57/2-	493.2 [‡] 3	100 [‡] 15	7859.9 55/2-	M1 [‡]	0.117	α (K)=0.096 3; α (L)=0.0162 5; α (M)=0.00378 <i>12</i> ; α (N+)=0.00123 4 DCO=0.85 <i>12</i> .
		946.1 [‡] 8	19 [‡] 7	7407.0 53/2-	E2 [‡]	0.00751	α(K)=0.00593 18; α(L)=0.00119 4
8372.1	59/2+	387.6 [‡] 3	100 [‡] 20	7984.5 57/2+	M1 [‡]	0.222	α (K)=0.182 6; α (L)=0.0309 10; α (M)=0.00723 22; α (N+)=0.00234 7 DCO=0.62 7.
8438.7	59/2 ⁽⁺⁾	371.0 [‡] 8	100 [‡] 42	8067.8 57/2 ⁽⁺) M1 [‡]	0.250	α (K)=0.205 7; α (L)=0.0348 11; α (M)=0.00814 25; α (N+)=0.00264 8 DCO=0.65 11.
8520.1	57/2 ⁽⁺⁾	504.2 [‡] 5	100 [‡] 26	8015.9 55/2(+) M1 [‡]	0.111	α (K)=0.090 3; α (L)=0.0152 5 DCO=0.67 12.
		968.8 [‡] 8	28 [‡] 10	7551.3 53/2(+) E2 [‡]	0.00717	$\alpha(K)=0.00567 \ 17; \ \alpha(L)=0.00112 \ 4$
8635.5	59/2-	515.1 [‡] 3	100 [‡] <i>19</i>	8120.5 57/2-	M1 [‡]	0.105	α (K)=0.085 3; α (L)=0.0144 5 DCO=0.69 12.
		975.1 [‡] 8	28 [‡] 11	7660.2 55/2-	E2 [‡]	0.00707	α (K)=0.00560 <i>17</i> ; α (L)=0.00111 <i>4</i> DCO=0.93 <i>18</i> .
8794.7	61/2+	422.6 [‡] 5	100 [‡] 25	8372.1 59/2+	M1 [‡]	0.177	α(K)=0.144 5; α(L)=0.0245 8; α(M)=0.00572 18; α(N+)=0.00186 6 DCO=0.48 7.

					Ado	pted Level	s, Gammas	(continued)
						γ (¹⁹⁷ F	b) (continue	ed)	
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{a}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^{&}	α^{c}	$I_{(\gamma+ce)}$	Comments
8830.5	61/2 ⁽⁺⁾	391.8 [‡] 5	100 [‡] 33	8438.7	59/2 ⁽⁺⁾	M1 [‡]	0.216		α (K)=0.177 6; α (L)=0.0300 9; α (M)=0.00702 21; α (N+)=0.00228 7 I _y : Combined for 390.2+391.1+391.8 \$ DCO=0.59 9 for 390.2+391.1+391.8.
8878.5	59/2-	525.4 [‡] 5	100 [‡] 21	8353.1	57/2-	M1 [‡]	0.099		α(K)=0.0811 25; α(L)=0.0136 4 DCO=0.85 13.
9041.9	59/2 ⁽⁺⁾	521.8 [‡] 8	100 [‡] 47	8520.1	57/2 ⁽⁺⁾	M1 [‡]	0.101		α(K)=0.0826 25; α(L)=0.0139 5 DCO=0.57 13.
9198.0	61/2-	562.6 [‡] 5	100 [‡] 21	8635.5	59/2-	M1 [‡]	0.0829		α(K)=0.0677 21; α(L)=0.0114 4 DCO=0.68 9.
		1077.4 [‡] 8	31 [‡] <i>13</i>	8120.5	57/2-	E2 [‡]	0.00583		$\alpha(K)=0.00466\ 14;\ \alpha(L)=0.00088\ 3$
9246.4	63/2+	451.7 [‡] 5	100 [‡] <i>31</i>	8794.7	61/2+	M1 [‡]	0.148		α (K)=0.121 4; α (L)=0.0205 7; α (M)=0.00478 15; α (N+)=0.00156 5 DCO=0.66 12.
9441.4	61/2-	562.9 [‡] 5	100 [‡] 33	8878.5	59/2-	M1 [‡]	0.0828		α(K)=0.0676 21; α(L)=0.0114 4 DCO=0.74 13.
9581.8	61/2 ⁽⁺⁾	539.9 [‡] 8	100 [‡] 57	9041.9	59/2 ⁽⁺⁾	M1 [‡]	0.092		α(K)=0.0755 23; α(L)=0.0127 4 DCO=0.56 13.
9723.5	65/2+	477.1 [‡] 8	100 [‡] <i>39</i>	9246.4	63/2+	M1 [‡]	0.128		α (K)=0.105 4; α (L)=0.0177 6; α (M)=0.00413 13; α (N+)=0.00135 4 DCO=0.63 12.
9793.9	$63/2^{-}$	596.0 [‡] 3	100 [‡] 27	9198.0	$61/2^{-}$	M1 [‡]	0.0712		$\alpha(K)=0.0582 \ 18; \ \alpha(L)=0.0098 \ 3$
		1158.1 [‡] 8	12 [‡] 8	8635.5	59/2-	E2 [‡]	0.00507		α(K)=0.00408 13; α(L)=0.00075 2
10023.3	63/2-	581.9 [‡] 8	100 [‡] 39	9441.4	$61/2^{-}$	M1 [‡]	0.0758		α (K)=0.0620 <i>19</i> ; α (L)=0.0104 <i>4</i>
10405.5	$65/2^{-}$	611.7 [‡] 5	100 [‡] <i>33</i>	9793.9	63/2-	M1 [‡]	0.0666		$\alpha(K)=0.0544$ 17; $\alpha(L)=0.0091$ 3
		1207.4 [‡] 8	17 [‡] 9	9198.0	$61/2^{-}$	E2 [‡]	0.00469		α(K)=0.00378 12; α(L)=0.00069 2
123.0+x	J+2	123.0 [@] e 5		Х	J≈(9/2 ⁻)				
199.4+x	J+3	142.6 ^{@e} 5		56.8+x	J+1				
286.7+x	J+4	163.7 5		123.0+x	J+2	Q			
383.1+x	J+5	96.4 [@] 4		286.7+x	J+4				
		183.7 4		199.4+x	J+3	Q		0.54 10	
491.3+x	J+6	108.5 4		383.1+x	J+5	(D)		0.71.0	
607 1+x	I+7	204.6 4		286.7 + x 491.3 + x	J+4 I+6	Q (D)		0.718	
007.17X	J + /	223.8.5		383.1+x	J+5	0		0.94 8	
736.3+x	J+8	129.0 4		607.1+x	J+7	(D)		5.7.0	
		245.2 5		491.3+x	J+6	Q		0.95 9	
871.1+x	J+9	134.8 [@] 5		736.3+x	J+8				

From ENSDF

$\gamma(^{197}{ m Pb})$ (continued)
---------------------------	------------

E_i (level)	\mathbf{J}_i^{π}	Eγ	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	$I_{(\gamma+ce)}$
871.1+x	J+9	264.0 5	607.1+x	J+7	Q	0.95 9
1022.8+x	J+10	151.9 [#] 6	871.1+x	J+9		b
		286.4 5	736.3+x	J+8	Q	0.89 6
1175.4+x	J+11	152.6 [#] 6	1022.8+x	J+10		b
		304.3 5	871.1+x	J+9	Q	0.96 6
1350.1+x	J+12	174.6 [@] 5	1175.4+x	J+11		
		327.3 5	1022.8+x	J+10	Q	1.00 6
1519.6+x	J+13	344.2 5	1175.4+x	J+11	Q	0.95 6
1718.7+x	J+14	368.6 5	1350.1+x	J+12	Q	0.57 5
1903.5+x	J+15	383.9 5	1519.6+x	J+13	Q	0.91 7
2128.4+x	J+16	409.7 5	1718.7+x	J+14	Q	0.47 5
2326.8+x	J+17	423.3 5	1903.5+x	J+15	Q	1.00 7
2579.4+x	J+18	451.0 5	2128.4+x	J+16	Q	0.24 4
2789.4+x	J+19	462.6 5	2326.8+x	J+17	Q	0.84 6
3071.3+x	J+20	491.9 5	2579.4+x	J+18	Q	0.31 5
3290.6+x	J+21	501.2 5	2789.4+x	J+19	Q	0.71 5
3603.8+x	J+22	532.5 5	3071.3+x	J+20	Q	0.25 4
3831.0+x	J+23	540.4 5	3290.6+x	J+21	Q	0.65 4
4176.5+x	J+24	572.7 5	3603.8+x	J+22	Q	0.24 4
4409.6+x	J+25	578.6 5	3831.0+x	J+23	Q	0.64 4
4789.8+x	J+26	613.3 6	4176.5+x	J+24	Q	0.33 4
5026.5+x	J+27	616.9 5	4409.6+x	J+25	Q	0.54 4
5442.6+x	J+28	652.8 6	4789.8+x	J+26	Q	0.26 4
5681.0+x	J+29	654.5 6	5026.5+x	J+27	Q	0.46 4
6134.7+x	J+30	692.1 6	5442.6+x	J+28	Q	0.12 2
6373.2+x	J+31	692.2 [@] 6	5681.0+x	J+29		0.35 4
6865.9+x	J+32	731.2 [@] 7	6134.7+x	J+30		0.09 5
7103.0+x	J+33	729.8 [@] 7	6373.2+x	J+31		0.24 3
7635.4+x	J+34	769.5 [@] 8	6865.9+x	J+32		0.06 4
7869.8+x	J+35	766.8 [@] 8	7103.0+x	J+33		0.14 2
8442.6+x	J+36	807.2 [@] 8	7635.4+x	J+34		0.15 4
8672.9+x	J+37	803.1 [@] 10	7869.8+x	J+35		0.10 2
200.1+y	J1+2	200.1 8	У	J1≈(17/2)		
440.9+y	J1+4	240.8 8	200.1+y	J1+2		
722.2+y	J1+6	281.3 6	440.9+y	J1+4		
1043.4+y	J1+8	321.2 6	722.2+y	J1+6		
1404.8+y	J1+10	361.4 6	1043.4+y	J1+8		
1805.9+y	J1+12	401.1 6	1404.8+y	J1+10		
2246.4+y	J1+14	440.5 7	1805.9+y	J1+12		

γ (¹⁹⁷Pb) (continued)

E_i (level)	\mathbf{J}_i^{π}	Eγ	E_f	${ m J}_f^\pi$	E _i (level)	\mathbf{J}_i^{π}	Eγ	E_f	${f J}_f^\pi$
2725.7+y	J1+16	479.3 6	2246.4+y	J1+14	1609.9+u?	J3+10	405.7 6	1204.2+u?	J3+8
3243.8+v	J1+18	518.1 7	2725.7+v	J1+16	2055.7+u?	J3+12	445.8 6	1609.9+u?	J3+10
3800.8+y	J1+20	557.08	3243.8+y	J1+18	2541.4+u?	J3+14	485.76	2055.7+u?	J3+12
4395.1+y	J1+22	594.3 7	3800.8+y	J1+20	3066.5+u?	J3+16	525.1 6	2541.4+u?	J3+14
5026.4+y	J1+24	631.3 7	4395.1+y	J1+22	3629.7+u?	J3+18	563.2 6	3066.5+u?	J3+16
5695+y	J1+26	668.3 8	5026.4+y	J1+24	4230.4+u?	J3+20	600.7 6	3629.7+u?	J3+18
6399+y	J1+28	704.7 13	5695+y	J1+26	4867.1+u?	J3+22	636.7 6	4230.4+u?	J3+20
221.8+z	J2+2	221.8 5	Z	J2≈(19/2)	5537.2+u?	J3+24	670.1 6	4867.1+u?	J3+22
483.6+z	J2+4	261.8 5	221.8+z	J2+2	6238.7+u?	J3+26	701.5 7	5537.2+u?	J3+24
785.3+z	J2+6	301.7 5	483.6+z	J2+4	6971.5+u?	J3+28	732.8 9	6238.7+u?	J3+26
1125.9+z	J2+8	340.6 5	785.3+z	J2+6	215.8+v?	J4+2	215.8 5	v?	J4≈(17/2)
1506.6+z	J2+10	380.7 5	1125.9+z	J2+8	475.4+v?	J4+4	259.6 5	215.8+v?	J4+2
1926.0+z	J2+12	419.4 5	1506.6+z	J2+10	778.0+v?	J4+6	302.6 5	475.4+v?	J4+4
2384.6+z	J2+14	458.6 5	1926.0+z	J2+12	1122.6+v?	J4+8	344.6 5	778.0+v?	J4+6
2882.4+z	J2+16	497.8 5	2384.6+z	J2+14	1508.9+v?	J4+10	386.3 5	1122.6+v?	J4+8
3418.0+z	J2+18	535.6 5	2882.4+z	J2+16	1934.6+v?	J4+12	425.7 5	1508.9+v?	J4+10
3991.4+z	J2+20	573.4 5	3418.0+z	J2+18	2401.5+v?	J4+14	466.9 6	1934.6+v?	J4+12
4601.8+z	J2+22	610.4 5	3991.4+z	J2+20	2907.6+v?	J4+16	506.2 6	2401.5+v?	J4+14
5249.9+z	J2+24	648.1 5	4601.8+z	J2+22	3453.7+v?	J4+18	546.1 5	2907.6+v?	J4+16
5934.0+z	J2+26	684.1 6	5249.9+z	J2+24	4036.9+v?	J4+20	583.2 5	3453.7+v?	J4+18
6654.5+z	J2+28	720.5 10	5934.0+z	J2+26	4656.5+v?	J4+22	619.6 5	4036.9+v?	J4+20
237.5+u?	J3+2	237.5 7	u?	J3≈(19/2)	5311.5+v?	J4+24	655.0 5	4656.5+v?	J4+22
517.2+u?	J3+4	279.7 6	237.5+u?	J3+2	5999.0+v?	J4+26	687.5 7	5311.5+v?	J4+24
839.7+u?	J3+6	322.5 6	517.2+u?	J3+4	6716.7+v?	J4+28	717.79	5999.0+v?	J4+26
1204.2+u?	J3+8	364.5 6	839.7+u?	J3+6					

21

[†] From ¹⁹⁷Bi ε decay (9.33 min).
[‡] From ¹⁸⁶W(¹⁸O,7nγ),¹⁸⁶W(¹⁶O,5nγ).
[#] Contaminated line in ¹⁸⁶W(¹⁸O,7nγ):SD.

[@] Very weak line in ${}^{186}W({}^{18}O,7n\gamma)$:SD.

& For SD band transitions, mult=Q (likely to be E2) is from $\Delta J=2$ implied from R(DCO), and mult=d is from $\Delta J=1$ implied by R(DCO).

^{*a*} Relative branching from each level.

^b Relative intensity within each SD band, values are from Figure 1 of 1996Hi13.

^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with "Frozen Orbitals" approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^d Multiply placed with undivided intensity.

^e Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

14.28		(71(7)
<u>14+28</u>		<u>0/10./+v</u>
<u>1</u> 4+26		<u>5999.0+v</u>
J4+24 €		5311.5+v
<u>J4+22</u> ⊎		<u>4656.5+v</u>
<u>J4+20</u> ↓ ∽		<u>4036.9+v</u>
<u>14+18</u>		<u>3453.7+v</u>
<u>J4+16</u> , § ^S		<u>2907.6+v</u>
<u>1</u> 4+14		<u>2401.5+v</u>
<u>J4+12</u>		<u>1934.6+v</u>
<u>J4+10</u>		<u>1508.9+v</u>
$\frac{14+8}{14+6}$	·	1122.6+y
J_{4+4}		=
<u>J4+2</u>	. ↓	<u>215.8+v</u>
$J4\approx(1/2)$, ,	· Γ	\sqrt{V}
<u>13+26</u>	, Ś	6238 7+u
35120		
J3+24	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>5537.2+u</u>
	,	
<u>J3+22</u>	¥- [©]	<u>4867.1+u</u>
J3+20	↓ [®]	4230.4+u
	······································	
<u>13418</u>	↓	<u>3629.7+u</u>
<u>J3+16</u>		<u>3066.5+u</u>
<u>J3+14</u>	¥-r-∞	<u>2541.4+u</u>
<u>J3+12</u>	k	<u>2055.7+u</u>
<u>J3+10</u>	×	<u>1609.9+u</u>
<u>J3+8</u>	···	<u>1204.2+u</u>
<u>J3+6</u>	±- <u>*</u> - <u>*</u> - <u>*</u> - <u>*</u> - <u>*</u>	<u>839.7+u</u>
13+4 $13+2$	·	$ \sum_{n=1}^{\infty} \frac{517.2 + u}{237.5 + u}$
$J_{3\approx(19/2)}^{5.72}$	¥_~~~	<u>`</u> <u></u> <u></u> <u></u> u
<u>J2+28</u>	b.	6654.5+z
<u>J2+26</u>	¥ [©]	5934.0+z
<u>J2+24</u>		5249.9+z
J2+22		4601.8+z
<u></u> <u></u>		3991.4+z
<u>J2+18</u>		3418.0+z
3/2-		0.0
		0.0

8.1 min 17

 $^{197}_{82}{\rm Pb}_{115}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

10.10		2410.0
<u>J2+18</u>		3418.0+z
J2+16	[₩]	2882.4+z
J2+14	v 20 m m m m m m m m m m m m m m m m m m	2384.6+z
I2+12		1926 0+7
12+10		1506.617
12+10		1125.0+2
<u>J2+6</u>		785 3+7
J2+4		483.6+z
J2+2		221.8+z
$\frac{J2\approx(19/2)}{11+28}$		$\sqrt{\frac{z}{6399+y}}$
<u>J1+28</u>		5505
<u>J1+26</u>	¥ °	
11 - 24		5026 4+v
<u>J1+24</u>		
J1+22		4395.1+y
	, ,	<u> </u>
J1+20	→	3800.8+y
11 - 10		3243 8±v
<u>J1+18</u>		
J1+16	¥ 🕅	2725.7+y
J1+14	↓ ¥ _	2246.4+y
I1+12		1805.9+v
<u>11+10</u>	, je	1404.8+v
<u>J1+10</u>		1043 4+v
<u>J1+6</u>	↓ ? S <	722.2+y
J1+4	↓ ² 8 [°]	440.9+y
J1+2	▼ <u>↓</u> ∞ _	200.1+y
J1≈(17/2)		У
J+37		<u>8672.9+x</u>
<u>J+36</u>		8442.6+x
J+35	<u>↓ , 8</u>	7869.8+x
<u>J+34</u>	✓ 4	<u>7635.4+x</u>
1.22		7102.0
<u>J+33</u>	→ → → <u>→</u> → <u>→</u> →	/103.0+X
J+32		<u>6865.9+x</u>
I+31		6373 2+x
<u>J+30</u>		6134 7+x
<u>J+50</u>		
<u>J+29</u>	+ <u>+</u> <u>\$</u> <u>\$</u> _ <u></u>	5681.0+x
J+28		5442.6+x
<u>J+27</u>	↓ ```` ```````````````````````````````	<u>5026.5+x</u>
<u>J+26</u>		4789.8+x
<u>J+25</u>		4409.6+x
J+24 L+22		<u>41/0.5+x</u>
J+23	~¥	<u>3831.0+x</u>
<u>J+22</u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>
2/2-		0.0

0.0 8.1 min 17

¹⁹⁷₈₂Pb₁₁₅

Adopted Levels, Gammas Legend Level Scheme (continued) Intensities: Relative photon branching from each level γ Decay (Uncertain) ----+ 540.4 Q <u>J+23</u> 3831.0+x + 32,5 0 | J+22 3603.8+x 1 301,2 Q J+21 3290.6+x 0 0 0 0 <u>J+20</u> 3071.3+x 1 402.0 p <u>J+19</u> 2789.4+x + 425.00 J+18 2579.4+x + \$3,30 + 2326.8+x J+17 0 < .00 + <u>J+16</u> 2128.4+x + 383.9 0 | <u>J+15</u> 1903.5+x · 368.6 0 1718.7+x J+14 0-3443 0 <u>J+13</u> 1519.6+x 32,3 6,5 6,5 7 9,8 7 9,8 7 1350.1+x <u>J+12</u> ³04,3 152,6 <u>J+11</u> 1175.4+x 2865 151,9 J+10 -50^{4.0} 1022.8+x 0 00 - 627 - 627 J+9 871.1+x 133 153 153 0 J+8 736.3+x 607.1+x J+7 + 1831 + 1831 + J+6 491.3+x - 6°. 0 <u>J+5</u> 383.1+x -3 14,00 286.7+x <u>J+4</u> 123.0 | 199.4+x <u>J+3</u> 123.0+x J+2 J+1 J≈(9/2⁻) 56.8+x ¥ X 3/2-

0.0 8.1 min 17

¹⁹⁷₈₂Pb₁₁₅

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Coincidence

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

¹⁹⁷₈₂Pb₁₁₅

Band(C): SD band 3 (2001Pr06),								
	$\alpha = +1/2$							
J1+28		6399+y						
J1+26	705	5695+y						
J1+24	668	5026.4+y						
J1+22	631	4395.1+y						
J1+20	594	3800.8+y						
J1+18	557	3243.8+y						
J1+16	518	2725.7+y						
J1+14	479	2246.4+y						
J1+12	440	1805.9+y						
J1+10	401	1404.8+y						
J1+8	361							
J1+6	221	722.2+y						
J1+4	281	⁄440.9+y						
J1+2	241	⁄200.1+y						
J1≈(1 7/2)	200	y						

(1996Hi13,2000Bu28, 2001Pr06)		Band(b): SD band 2 (1996Hi13, 2000Bu28,2001Pr06)		
J+37	8672.9+x	J+36		8442.6+x
J+35	803 7869.8+x	J+34	807	7635.4+x
J+33	767 7103.0+x	J+32	770	6865.9+x
J+31	730 6373.2+x	J+30	731	6134.7+x
J+29	5681.0+x	J+28	692	5442.6+x
J+27	5026.5+x	J+26	653	4789.8+x
J+25	617 4409.6+x	J+24	613	4176.5+x
J+23	5/9 3831.0+x	J+22	573	3603.8+x
J+21	3290.6+x	J+20	532	3071.3+x
J+19 I+17	2789.4+x 2326 8+x	J+18	492	2579.4+x
J+15	463 <u>1903.5+x</u>	$\frac{J+10}{J+14}$	451	$\frac{-2128.4+x}{1718.7+x}$
J+13	⁴²³ 1519.6+x	J+12	410	1350.1+x
<u>J+11</u>	384 11/5.4+x	J+10	369	1022.8+x
J+7	344 607.1+X	J+8 J+6	327	491.3+x
J+5	264 /383.1+x	→ J+4	286	286.7+x
J+3	224 / 199.4+x	J+2	245	
J+1 🖳	₩ 56.8+x	J≈(9/2) 🚺	$\equiv x$

Band(B): SD band 1 (1996Hi13,2000Bu28,

Band(A): ∆J=2 high-spin band corresponding to ¹⁹⁸Pb g.s. band

 $^{197}_{82} \mathrm{Pb}_{115}$

Band(d): SD band 6 (2001Pr06)						
		6716.7+v				
J4+26	718	<u>5999.0+v</u>				
J4+24	688	<u>5311.5+v</u>				
J4+22	655	4656.5+v				
J4+20	620	4036.9+v				
J4+18	583	<u>3453.7+v</u>				
J4+16	546	2907.6+v				
J4+14	506	2401.5+v				
J4+12	467					
$\overline{J4+10}$ – $\overline{J4+8}$	426	-1508.9+v 1122.6+v				
J4+6\	386	778.0+v				
J4+4\	345	′475.4+v				
$\overline{\mathbf{J4+2}} =$	303	-2215.8+v				
J4≈(17/ 2)	216_	_/v				

Band(D): SD band 5 (2001Pr06)

<u>J3+28</u>		<u>6971.5+u</u>
<u>J3+26</u>	733	6238.7+u_
<u>J3+24</u>	702	<u>5537.2+u</u>
<u>J3+22</u>	670	<u>4867.1+u</u> _
<u>J3+20</u>	637	4230.4+u
<u>J3+18</u>	601	<u>3629.7+u</u>
<u>J3+16</u>	563	<u>3066.5+u</u>
<u>J3+14</u>	525	<u>2541.4+u</u>
J3+12	486	2055.7+u
<u>J3+10</u>	446	1609.9+u
$J3+8 \sim -$	406	- — <u>1204.2+u</u>
<u>J3+6</u> \ -	- <mark>1</mark>	<u> </u>
<u>J3+4</u>	322	<u> 517.2+u</u>
<u>J3+2 </u>	280	-237.5+u
<u>J</u> 3≈(19/ 2)	238	u

Band(c): SD band 4 (2001Pr06), α =-1/2

J2+28		6654.5+z
	720	
J2+26	120	5934.0+z
	684	
J2+24	•	5249.9+z
	648	
J2+22	40	4601.8+z
10.00	610	2001 4
J2+20		3991.4+z
J2+18	573	3418.0+z
J2+16	536	2882.4+z
70.44	-	
J2+14	498	2384.6+z
J2+12	459	1926.0+z
J2+10		—1506.6+z
J2+8	419	1125.9+z
J2+6	381	
J2+4	341	/483.6+z
J2+2	302	221 8+7
12~(19/2)	262	Z
0=-(1)(2)	_ 222	<u> </u>

 $^{197}_{82}{\rm Pb}_{115}$

Band(E): Magnetic-rotational band 1, based on 27/2–(1995Ba35,

 $^{197}_{82} \mathrm{Pb}_{115}$