192 **Pt**(10 **B**,5n γ) 1986Ch01

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Huang Xiaolong, Zhou Chunmei	NDS 104, 283 (2005)	1-Jan-2002				

E=50-80 MeV, measured E γ , I γ , $\gamma\gamma(t)$, $\gamma(\theta)$, $\gamma(t)$ with Ge(Li).

¹⁹⁷Bi Levels

E(level) [†]	Jπ‡	T _{1/2} #	Comments
0	9/2-		
1000.73 16	$13/2^{-}$		
1009.23 16	$11/2^{-}$		
1196.25 15	$13/2^{+}$		
1600.95 25	$17/2^{+}$		
1968.6 <i>4</i>	$21/2^{+}$		
2065.5 4	$25/2^+$	60 ns 22	
2129.3 4	$(23/2^{-})$	204 ns 18	
2360.4 5	$27/2^{(+)}$		
2384.5 5	(25/2)		
2360.4+x 5	$(29/2^{-})$	263 ns 13	Additional information 1.
			An E1 transition would be expected from the systematics of 29/2 isomers observed in the heavier odd Bi isotopes. A search for low energy delayed γ rays with the planar Ge detector produced no candidates for this transition, suggesting that X ≤ 40 keV.
2688.7 5	27/2		
2846.00+x 20	$(31/2^{-})$		
2929.5 5	$(31/2^{-})$	209 ns 30	
3284.9+x <i>3</i>	$(33/2^{-})$		
3558.3 7			

 † From level scheme and Ey's using least-squares fit to data.

[±] From $\gamma(\theta)$ and systematics for the heavier odd-mass Bi isotopes. [#] From $\gamma\gamma(t)$ or $\gamma(t)$ measurements.

					¹⁹² F	$Pt(^{10}B,5n\gamma)$	1986Ch01	(continued)	
							$\gamma(^{197}\text{Bi})$		
Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π	Mult.@	δ^{a}	α b	Comments
96.9 2	12.0 24	2065.5	25/2+	1968.6	21/2+	(E2) ^{&}		7.90	$\alpha(K)= 0.465; \ \alpha(L)= 5.49; \ \alpha(M)= 1.456; \ \alpha(N+)= 0.486$
160.7 2	16.0 <i>16</i>	2129.3	(23/2 ⁻)	1968.6	21/2+	(E1)		0.1385	$\begin{aligned} \gamma(\theta): \ A_2 = +0.36 \ 11, \ A_4 = -0.13 \ 16. \\ \alpha(K) = 0.1115; \ \alpha(L) = 0.02060; \ \alpha(M) = 0.00485; \\ \alpha(N+) = 0.00158 \\ \gamma(\theta): \ A_2 = -0.08 \ 2, \ A_4 = -0.02 \ 3. \end{aligned}$
187.0 2	≈40 [‡]	1196.25	13/2+	1009.23	11/2-	(E1)		0.0951	$\alpha(K) = 0.0768; \ \alpha(L) = 0.01392; \ \alpha(M) = 0.00327; \ \alpha(N+) = 0.00106$
195.6 2	33.0 66	1196.25	13/2+	1000.73	13/2-	(E1)		0.0852	$\alpha(\mathbf{N}+)=0.000100$ $\alpha(\mathbf{K})=0.0689; \ \alpha(\mathbf{L})=0.01240; \ \alpha(\mathbf{M})=0.00291; \ \alpha(\mathbf{N}+)=0.00095$ $\alpha(\mathbf{N}+)=0.00095$
255.2 2	≤9 [#]	2384.5	(25/2)	2129.3	(23/2 ⁻)	D			$\begin{aligned} &\alpha(\mathbf{K}) = 0.616, \ \alpha(\mathbf{L}) = 0.1066, \ \alpha(\mathbf{M}) = 0.0251, \ \alpha(\mathbf{N}+) = 0.00837, \\ &\alpha=0.756 \text{ if mult=M1;} \\ &\alpha(\mathbf{K}) = 0.0364, \ \alpha(\mathbf{L}) = 0.00635, \ \alpha(\mathbf{M}) = 0.00149, \\ &\alpha(\mathbf{N}+) = 0.00048, \ \alpha=0.0447 \text{ if mult=E1.} \\ &\gamma(\theta): \ \mathbf{A}_2 = -0.19 \ 6, \ \mathbf{A}_4 = -0.01 \ I. \end{aligned}$
294.9 2	29.0 29	2360.4	27/2 ⁽⁺⁾	2065.5	25/2+	(E2) ^{&}		0.1286	$\alpha(K) = 0.0693; \ \alpha(L) = 0.0441; \ \alpha(M) = 0.01140; \ \alpha(N+) = 0.00377 \ \gamma(\theta); \ A_2 = -0.21 \ I, \ A_4 = -0.01 \ 2.$
367.6 2	85.0 85	1968.6	21/2+	1600.95	17/2+	(E2) ^{&}		0.0682	$\alpha(\mathbf{K}) = 0.0420; \ \alpha(\mathbf{L}) = 0.01962; \ \alpha(\mathbf{M}) = 0.00501; \alpha(\mathbf{N}+) = 0.00166 \gamma(\theta); \ \alpha_2 = \pm 0.10.3, \ \alpha_4 = \pm 0.00.4$
404.7 2	100 10	1600.95	17/2+	1196.25	13/2+	(E2) ^{&}		0.0527	$\alpha(\mathbf{K}) = 0.0339; \ \alpha(\mathbf{L}) = 0.01406; \ \alpha(\mathbf{M}) = 0.00356; \alpha(\mathbf{N}+) = 0.00118 $
438.9 2	8.0 8	3284.9+x	(33/2 ⁻)	2846.00+x	(31/2 ⁻)	(M1+E2)	-0.37 21	0.158 18	$\gamma(\theta)$: A ₂ =+0.41 <i>I</i> , A ₄ =-0.02 <i>I</i> . $\alpha(K)=0.128$ <i>I</i> 5; $\alpha(L)=0.0226$ <i>I</i> 8; $\alpha(M)=0.0053$ <i>4</i> ; $\alpha(N+)=0.00178$ <i>I</i> 4 $\alpha(N)=0.0225$
485.6 2	17.0 17	2846.00+x	(31/2 ⁻)	2360.4+x	(29/2 ⁻)	(M1+E2)	-0.33 18	0.123 11	$\gamma(\theta)$: A ₂ =-0.38 3, A ₄ =+0.02 3. $\alpha(K)$ = 0.100 10; $\alpha(L)$ = 0.0174 12; $\alpha(M)$ = 0.0041 3; $\alpha(N+)$ =0.00137 9
623.2 2	6.0 6	2688.7	27/2	2065.5	25/2+	D			$\gamma(\theta)$: A ₂ =-0.38 2, A ₄ =-0.04 2. $\alpha(K)$ =0.0561, $\alpha(L)$ =0.00953, α =0.0688 if mult=M1; $\alpha(K)$ =0.00526, $\alpha(L)$ =0.00084, α =0.00638 if mult=E1. $\gamma(\theta)$: A ₂ =-0.24 5, A ₄ =-0.02.9
628.8 5		3558.3		2929.5	$(31/2^{-})$				$\gamma(0)$. $A_2 = -0.27$ 3, $A_4 = -0.02$ 9.
864.0 2	13.0 13	2929.5	(31/2 ⁻)	2065.5	25/2+	(E3)		0.02337	α (K)=0.01639; α (L)=0.00525 γ (θ)=+0.08 3, A ₄ =-0.03 4.
1000.8 2	≥44 [‡]	1000.73	13/2-	0	9/2-	(E2) ^{&}		0.00706	$\alpha(K)=0.00558; \alpha(L)=0.00111$ $\gamma(\theta): A_2=+0.19, 3, A_4=-0.07, 5.$
1009.2 2	59.0 59	1009.23	11/2-	0	9/2-	(M1+E2)	-0.38 14	0.0182 12	$\alpha(K) = 0.0148 \ 10; \ \alpha(L) = 0.00251 \ 14$ $\gamma(\theta): A_2 = -0.37 \ 1, A_4 = +0.03 \ 2.$

ы

From ENSDF

 $^{197}_{83}{
m Bi}_{114}$ -2

L

[@] ΔJ and $\Delta \pi$ between transition levels, except as noted.

[&] From $\gamma(\theta)$ characteristic of stretched quadrupoles.

^{*a*} From $\gamma(\theta)$.

^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁹⁷₈₃Bi₁₁₄