¹⁸⁷**Re**(¹⁶**O,6n**γ) 1995Zh36,1995Zh56

	Histor	ry	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Huang Xiaolong, Zhou Chunmei	NDS 104, 283 (2005)	1-Jan-2002

The level scheme is given as constructed by 1995Zh36 and 1995Zh56 based on coincidences, γ -ray intensities, observed $T_{1/2}$ and conversion coefficients limits. 1995Zh36,1995Zh56: ¹⁸⁷Re(¹⁶O,6nG), E=85-105 MeV. Measured γ , $\gamma\gamma$, $\gamma\gamma$, $\gamma\gamma$ (t) using a six BGO(AC) HPGe detectors and one

intrinsic Ge planar detector.

¹⁹⁷Bi Levels

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	Comments
0	$(9/2^{-})$		
999.9 <i>4</i>	$(13/2^{-})$		
1009.4 4	$(11/2^{-})$		
1196.3 4	$(13/2^+)$		
1600.6 7	$(17/2^+)$	15.3 ns 30	
1967.5 8	$(21/2^+)$		
1968+x		18.0 ns <i>31</i>	Additional information 1. E(level): this level decays to 1968 through a low energy γ of $E\gamma = x$.
2064.7 10		36.7 ns 70	
2088.6 10	$(25/2^+)$	19.3 ns 49	J^{π} : $\Delta J=2$ (E2) 121.1 γ to (21/2 ⁺).
2127.9+x 5			
2357.4 11	$(27/2^+)$	53 ns 21	
2383.1+x 7	$(29/2^{-})$	253 ns <i>39</i>	J^{π} : Assigned by authors. Detail arguments not given.
2383.3 11	$(27/2^+)$		J^{π} : From $\Delta J=1$ 294.7 γ to (25/2 ⁺) with different multipolarities.
2497.8 11			
2635.1 12			
2687.6 11	(21/2-)		
2868.2+x 12	(31/2)		J ^A : Assigned by authors. Detail arguments not given.
2928.3 12			
3070.0 11			
30/8.5 IZ	$(22/2^{-})$		We Assigned by outpors. Detail arguments not given
3555 6 13	(35/2)		J [*] . Assigned by authors. Detail arguments not given.
$3684.0 \pm x.10$			
3866 2 14			
4024 8 13			
1021.015			

[†] From level scheme and Eγ's using least-squares fit to data.
[‡] From 1995Zh36,1995Zh56.
[#] From adopted values, except as noted.

$\gamma(^{197}{ m Bi})$

E _γ ‡	$I_{\gamma}^{\dagger \ddagger}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult.	Comments
97.2 5	13 <i>3</i>	2064.7		1967.5	$(21/2^+)$		
121.1 5	72	2088.6	$(25/2^+)$	1967.5	$(21/2^+)$	(E2)	Mult.: (E2). $\gamma(\theta)$ favors $\Delta J=2$; but I γ rules out M2.
159.9 5	19 4	2127.9+x		1968+x			$\gamma(\theta)$: A ₂ =-0.08 3, A ₄ =-0.01 3, favors ΔJ =1; but I γ
							suggest $\alpha(255\gamma) > \alpha(160\gamma)$ rules out some multipolarity
							for both.
186.9 5	51 10	1196.3	$(13/2^+)$	1009.4	$(11/2^{-})$		$\gamma(\theta)$: A ₂ =-0.18 7, A ₄ =0.009 6.
196.4 5	31 6	1196.3	$(13/2^+)$	999.9	$(13/2^{-})$		$\gamma(\theta)$: A ₂ =-0.09 2, A ₄ =0.01 <i>I</i> ; I γ estimated from
							coincidence data.

Continued on next page (footnotes at end of table)

¹⁸⁷**Re**(¹⁶**Ο,6n**γ) 1995Zh36,1995Zh56 (continued)

$\gamma(^{197}\text{Bi})$ (continued)

E _γ ‡	$I_{\gamma}^{\dagger \ddagger}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Comments
240.7 5	8 1	2928.3		2687.6		
255.2 5	13 <i>1</i>	2383.1+x	$(29/2^{-})$	2127.9+x		$\gamma(\theta)$: A ₂ =-0.10 3, A ₄ =-0.02 4, favors ΔJ =1; but I γ suggest
						$\alpha(255\gamma) > \alpha(160\gamma)$ rules out some multipolarity for both.
277.7 5	61	2635.1		2357.4	$(27/2^+)$	
292.7 5	8 1	2357.4	$(27/2^+)$	2064.7		$\gamma(\theta)$: A ₂ =0.18 4, A ₄ =0.04 3.
294.7 5	32 <i>3</i>	2383.3	$(27/2^+)$	2088.6	$(25/2^+)$	$\gamma(\theta)$: A ₂ =-0.13 <i>I</i> , A ₄ =-0.03 2.
310.6 5	4 1	3866.2		3555.6		
366.9 5	94 9	1967.5	$(21/2^+)$	1600.6	$(17/2^+)$	$\gamma(\theta)$: A ₂ =0.09 2, A ₄ =0.02 1.
377.4 5	51	3684.0+x		3306.6+x	$(33/2^{-})$	Iy estimated from coincidence data.
404.3 5	100	1600.6	$(17/2^+)$	1196.3	$(13/2^+)$	$\gamma(\theta)$: A ₂ =0.12 <i>1</i> , A ₄ =0.03 2.
433.1 5	71	2497.8		2064.7		
438.6 5	8 1	3306.6+x	$(33/2^{-})$	2868.2+x	$(31/2^{-})$	$\gamma(\theta)$: A ₂ =-0.31 7, A ₄ =0.03 5.
484.9 5	17 <i>3</i>	2868.2+x	$(31/2^{-})$	2383.1+x	$(29/2^{-})$	$\gamma(\theta)$: A ₂ =-0.30 3, A ₄ =-0.04 3.
580.5 5	61	3078.3		2497.8		
622.9 5	10 <i>1</i>	2687.6		2064.7		$\gamma(\theta)$: A ₂ =-0.19 6, A ₄ =-0.02 5.
627.3 5	13 <i>I</i>	3555.6		2928.3		
863.6 5	16 2	2928.3		2064.7		$\gamma(\theta)$: A ₂ =0.07 3, A ₄ =-0.03 4; I γ estimated from coincidence data.
923.5 5	14 <i>1</i>	3306.6+x	$(33/2^{-})$	2383.1+x	$(29/2^{-})$	
946.5 5	61	4024.8		3078.3		I γ estimated from coincidence data.
999.9 5	31 <i>3</i>	999.9	$(13/2^{-})$	0	$(9/2^{-})$	$\gamma(\theta)$: A ₂ =0.212 4, A ₄ =-0.07 6.
1005.9 5	51	3070.6		2064.7		Iy estimated from coincidence data.
1009.4 5	51 5	1009.4	$(11/2^{-})$	0	$(9/2^{-})$	$\dot{\gamma}(\theta)$: A ₂ =-0.31 2, A ₄ =0.00 0.
1196.3 5	18 2	1196.3	$(13/2^+)$	0	$(9/2^{-})$	$\gamma(\theta)$: A ₂ =0.19 3, A ₄ =-0.11 2.

[†] Relative intensity normalized to $I\gamma(404.3\gamma)=100$. [‡] Obtained from single and coincidence measurements(1995Zh56).

 $^{197}_{83}{\rm Bi}_{114}$