Coulomb excitation 1988St16,1981Ve12,1971Mc14

Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Huang Xiaolong, Zhou Chunmei	NDS 104, 283 (2005)	1-Jan-2002	

¹⁹⁷Au(p,p'): E=6 MeV (1957E111), E=6.7-12.6 MeV (1961Co35), E=8-23 MeV (1989Du02).

¹⁹⁷Au(p,p'γ): E=3 MeV (1955Mc51,1958Mc02), 4 MeV (1958Ma36,1961Re02), 12.3 MeV (1989KaZX).

¹⁹⁷Au(¹⁶O,¹⁶O'γ), E=52 MeV (1970Sh12), 42-45 MeV (1971Mc14), 10-24 MeV (1974Yo02), 45 MeV (1974Ul01).

¹⁹⁷Au(32 S, 32 S' γ): E=64 MeV (1974Yo02).

 197 Au(35 Cl, 35 Cl' γ): E=120 MeV (1979Bo10), measured T_{1/2} via recoil-distance Doppler shift.

¹⁹⁷Au(40Ar,⁴⁰Ar' γ): E=171 MeV (1981Ve12), measured T_{1/2} by RDM with Ge(Li).

¹⁹⁷Au(⁵⁸Ni,⁵⁸Ni' γ): E=175, 220 MeV (1988St16,1988St09), measured $\gamma(\theta, H, t)$, (particle) γ -coin, T_{1/2} by using

Doppler-broadened lineshape technique, B(M1) and B(E2).

¹⁹⁷Au(63 Cu, 63 Cu, 63 Cu' γ): E=180 MeV (1986Ba19), measured $\gamma(\theta,H)$.

Others: 1988Li20, 1988Su08, 1988We11, 1987St14, 1954Co55, 1954Go41, 1955Be19, 1955St57, 1969PrZV, 1989Ko17.

¹⁹⁷Au Levels

1988St16, 1971Mc14, 1979Bo10 compare B(E2) and B(M1) (exp vs theory) using the weak-coupling core-excitation model of 1961De37; 1979Bo10 postulate a d3/2 proton hole coupled to a ¹⁹⁸Hg core.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments
0.0 [@] 77.350 <i>10</i>	3/2 ⁺ 1/2 ⁺	stable [@]	g=+0.097 (1988St16,1988St09) g=+0.839 6 (1988St16,1988St09) T _{1/2} : 1.91 ns 2 (+0 Au), 1.97 ns 8 (+10 Au) (1974Ul01). T _{1/2} (neutral atom Au)/T _{1/2} (10 ⁺ Au)=0.95 <i>10</i> (1974Yo02). B(E2)=0.130 7 (1971FoZW), B(E2)/(1+α)=0.0231 <i>17</i> (1974Yo02). B(E2): for α=4.23 7, δ=-0.35 <i>1</i> B(E2) values lead to T _{1/2} =1.63 ns 13 (1971FoZW), 1.75 ns <i>16</i> (1974Yo02). The adopted value is 1.91 ns 1.
268.75 5	3/2+	15.4 ps <i>13</i>	Others: 1955Be19, 1958Mc02. B(E2) \uparrow =0.083 6 T _{1/2} : recoil-distance method (1979Bo10). Others: 13.7 ps 33 if B(E2)=0.083 6, I(γ +ce 269 γ)=3.3% 3 and α (269 γ)=0.15; 13.9 ps 35 (1986Ba19). Others: 1961Re02, 1969PrZV, 1970Sh12.
279.01 5	5/2+&	18.6 ps <i>15</i>	B(E2)↑=0.314 8 (1971Mc14) g=+0.296 23 (1988St16,1988St09), +0.21 2 (1986Ba19). T _{1/2} : recoil-distance method (1979Bo10). Others: 15.8 ps 30 if B(E2)=0.314, Iγ(279γ)-branching=98.5%, δ=-0.40; 20.4 ps +37-26 (1988St16) Doppler-broadened line shape technique; 16.0 ps 28 (1986Ba19) Doppler-shift attenuation method. Other B(E2)'s: 1957E111, 1958Mc02, 1958Ma36, 1961Re02, 1970Sh12. Iγ(202γ)/Iγ(279γ)=0.0150 12 (1971Mc14), 0.0142 (1970Sh12).
502.7 3	5/2+ &	1.77 ps +19–12	g=+1.2 2 (1988St16,1988St09) T _{1/2} : other: <2.8 ps (recoil-distance method,1979Bo10). Branching: $I\gamma(426\gamma)/I\gamma(503\gamma)=3/97$ (1988St16).
547.5 3	7/2+&	4.61 ps + <i>19–13</i>	$g=+0.241 \ 21 \ (1988St16, 1988St09)$ B(E2)=0.457 12 (1971Fo12), 0.447 22 (1971Mc14). T _{1/2} : others: 6.8 ps 5 (1979Bo10) recoil-distance method; 4.65 ps 28 if B(E2)=0.447 22, I ₇ (547 γ)-branching=94.4%; \approx 5 ps (1974WaZA) Doppler-broadened lineshape; 4.57 ps 28 (1981Ve12) RDM; 4.6 ps 28 (1986Ba19) Doppler-shift attenuation method. Other B(E2)'s: 1957E111, 1961Co35, 1961Re02, 1970Sh12. Branching: I ₇ (547 γ):I ₇ (279 γ):I ₇ (268.6 γ)=100:0.7 2:5.2 4 (1971Mc14), 100:-:7.3 (1970Sh12), 95:-:5 (1988St16).

Continued on next page (footnotes at end of table)

¹⁹⁷Au(α, α'): E=15 MeV (1971FoZW).

¹⁹⁷Au($\alpha, \alpha' \gamma$): E=10-14 MeV (1971Mc14).

Coulomb excitation 1988St16,1981Ve12,1971Mc14 (continued)

¹⁹⁷Au Levels (continued)

E(level) [†]	Jπ‡	T _{1/2} #	Comments
736.7 3	7/2+ &	1.09 ps +13-9	$g=+0.48 \ I4 \ (1988St16,1988St09)$ F(level): 960 3 keV (1971Mc14) if 457 7 γ proceeds to 502.6 level
855.4 4	9/2 ⁺ &	2.67 ps +25-15	g=+0.34 12 (1988St16,1988St09) $T_{1/2}$: others: 5.1 ps 22 (1979Bo10), 3.05 ps 35 (1981Ve12), recoil-distance method.
888.05 22 935.72 18			Branching: $I\gamma(308\gamma)/I\gamma(577\gamma)=14/86$ (1988St16), 8/92 (1981Ve12). $I\gamma(619\gamma)/I\gamma(811\gamma)=0.27$ 3 (1971Mc14). Branching: $I\gamma(936\gamma):I\gamma(667\gamma):I\gamma(657\gamma)=100:100$ 14:49 10 (1971Mc14).
1231.0 8	11/2+ <mark>&</mark>	0.91 ps <i>1</i>	g=+0.37 <i>18</i> (1988St16) T _{1/2} : other: 1.18 ps 28 (1981Ve12). Branching: $I\gamma(376\gamma)/I\gamma(683\gamma)=11/89$ (1981Ve12).

 † From Ey's and scheme using least-squares fit to data.

[‡] From Adopted Levels, except as noted.

[#] From Doppler-broadened line shape technique (1988St16), except as noted.

[@] From Adopted Levels.

& From angular correlations of deexcitation rays (1988St16).

 $\gamma(^{197}\mathrm{Au})$

 $\gamma(\theta=0^{\circ},90^{\circ})$ spectra at E $\alpha=14$ MeV studied (1971Mc14).

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{\&}$	α^{a}	Comments
77.35 1		77.350	1/2+	0.0	3/2+	M1+E2	-0.35 1	4.24 7	α(L)= 3.21 6; α(M)= 0.780 14; α(N+)= 0.244 5 Eγ (1963Ma08,1974HeYW), δ (1975Pr09) from (γ,γ) Mossbauer. 1974U101 studied α(exp) dependence on neutral vs +10 charge ¹⁹⁷ Au.
191.5 3	18.0 11	268.75	3/2+	77.350	1/2+	M1+E2	0.14 <i>I</i>	1.173 2	$\alpha(K) = 0.9597 \ 22; \ \alpha(L) = 0.16339$ 7; $\alpha(M) = 0.03787 \ 3; \ \alpha(N+) = 0.01194$ δ : from ce(L) ratios (1970Sh10) 197 Hg ε decay (64.1-h).
201.6 3	1.65 10	279.01	5/2+	77.350	1/2+	E2		0.369	$\alpha(K) = 0.1679; \ \alpha(L) = 0.1506; \ \alpha(M) = 0.0385; \ \alpha(N+) = 0.01199$ Mult.: from $\gamma(\theta)$ (1971Mc14).
268.5	5.2 3	547.5	7/2+	279.01	5/2+	M1+E2	+0.055 10	0.4654 4	α(K) = 0.3828 4; α(L) = 0.06342; α(M) = 0.01467; α(N+) = 0.00459 E _γ : from ΔE(levels) established by (268.5γ)(279γ)-coin (1971Mc14). I _γ : ΔJ=0 component subtracted from Iγ doublet. δ: from γ(θ) (1971Mc14).
268.75 5	1.12 10	268.75	3/2+	0.0	3/2+	E2(+M1)	>3.4	0.158 12	$\alpha(K)=0.0821, \alpha(L)=0.0470, \alpha(M)=0.01186,$

 $^{197}_{79}\mathrm{Au}_{118}\text{-}3$

		-	Coulom	o excitation	n 19	88St16,198	81Ve12,197	1Mc14 (conti	inued)	
γ ⁽¹⁹⁷ Au) (continued)										
E_{γ}^{\dagger}	I_{γ} ‡	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.@	δ ^{&}	α^{a}	Comments	
									α (N+)=0.00370, α =0.1446 if mult=E2. α (K)=0.1060, α (L)=0.0483, α (M)=0.01208, α (N+)=0.00377, α =0.1702 if mult=E2(+M1), δ =3.4.	
									E _{γ} : from ¹³ /Hg ε decay (64.14 h). I _{γ} : calculated from I γ -branching ratio via ¹⁹⁷ Hg ε decay. δ : from L1+L2/L3=2.8 <i>3</i> (1970Sh10).	
278.7	0.7 2	547.5	7/2+	268.75	3/2+	[E2]		0.1293	$\alpha(K) = 0.0750; \ \alpha(L) = 0.0408; \ \alpha(M) = 0.01028; \ \alpha(N+) = 0.00321 \ E_{\gamma}: \text{ from energy level difference.} \ I(279\gamma)/I(268.6\gamma) = 0.11 \ 3 \ (1971Mc14) \ (191\chi)(279\chi+269\chi)$	
279.01 5	110 5	279.01	5/2+	0.0	3/2+	M1+E2	-0.39 2	0.382 4	$\begin{aligned} \alpha(K) &= 0.310 \ 4; \ \alpha(L) = 0.05492 \ 20; \\ \alpha(M) &= 0.01281 \ 4; \\ \alpha(N+) &= 0.00401 \\ E_{\gamma}: \ from \ 1972Wi21 \ (^{197}Hg \ \varepsilon \\ decay). \\ \delta: \ others: \ -0.41 \ 4 \ (1958Mc02), \\ -0.33 \ 9 \ (1958Ma36), \ -0.40 \ 4 \end{aligned}$	
308	14 [#]	855.4	9/2+	547.5	7/2+	M1+E2	-0.30 9	0.302 12	(1971Mc14). $\alpha(K) = 0.247 \ 11; \ \alpha(L) = 0.0422 \ 8; \ \alpha(M) = 0.00981 \ 16; \ \alpha(N_{+,*}) = 0.00307 \ 5$	
(376) 426	0.021 2	1231.0 502.7	11/2 ⁺ 5/2 ⁺	855.4 77.350	9/2 ⁺ 1/2 ⁺				E_{γ} : from level scheme (1988St16). E_{γ} : from level scheme (1981Ve12). E_{γ} : from 1988St16. I_{γ} : from Iy(426 γ)/I γ (503 γ)=3/97 (1088St16) and I χ (502 χ)=0.60.5	
457.7 3		736.7	7/2+	279.01	5/2+	M1+E2	-0.26 3	0.1059 12	$\alpha(K) = 0.0871 \ 10; \ \alpha(L) = 0.01445$ $12; \ \alpha(M) = 0.00334;$ $\alpha(N+) = 0.00105$ $E_{\gamma}: \text{ others: } (n,n'\gamma) \ 457.7 \ 3$ $(1971Ba29), \ 457.9 \ 3 \ (1971Ne01).$ Placement based on $({}^{58}Ni, {}^{58}Ni'\gamma)$ (1988St16) and (d,d'), (n,n').	
502.6 <i>3</i> 547.5 <i>3</i>	0.69 <i>5</i> 100 <i>5</i>	502.7 547.5	5/2 ⁺ 7/2 ⁺	$\begin{array}{c} 0.0\\ 0.0\end{array}$	3/2 ⁺ 3/2 ⁺	M1+E2 E2	-0.24 9	0.084 <i>3</i> 0.02102	(n,n' γ) excitations. $\alpha(K) = 0.0686\ 23;\ \alpha(L) = 0.0113\ 3$ $\alpha(K) = 0.01561;\ \alpha(L) = 0.00407$ Mult.: other $\gamma(\theta)$ measurements: 1981Ve12 1971Mc14, K/I = 3.7.4	
576.5 4	86 [#]	855.4	9/2+	279.01	5/2+	E2		0.01864	(1961vc12,1971wc14, K)L=3.74 (1961kc02). $\alpha(K)=0.01398; \alpha(L)=0.00350$ $E_{\gamma}: from 1988St16 and 1981Vc12.Others: (n,n'\gamma) 1971Ba29, 577.1$	
									4 (19/1Ne01). Placement from 1988St16 and 1981Ve12. Other: 1979Bo10 based on (d,d'), (n,n'), (n,n' γ) excited states. Mult.: other $\gamma(\theta)$ measurement: 1981Ve12	
619.4 <i>3</i>	0.14 2	888.05		268.75	3/2+		0		1701 VC12.	
				Continu	ied on	next page (footnotes at	t end of table)	

			Co	ulomb exe	itation	1988St	16,1981Ve1	2,1971Mc14 (continued)
						γ (¹⁹⁷ Au) (continued	<u>1)</u>
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.@	α ^{<i>a</i>}	Comments
656.8 <i>3</i>	0.13 3	935.72		279.01	5/2+			
666.9 <i>3</i>	0.26 3	935.72		268.75	$3/2^{+}$			
683		1231.0	$11/2^{+}$	547.5	$7/2^{+}$	E2	0.01274	$\alpha(K)=0.00983; \alpha(L)=0.00219$
			,		,			E_{ν} : from level scheme (1988St16,1981Ve12).
								Mult : other $\gamma(\theta)$ measurement: 1981Ve12.
810.6 <i>3</i>	0.51 4	888.05		77.350	$1/2^{+}$			
935.7 3	0.26 2	935.72		0.0	3/2+			

[†] E γ measurements from 1971Mc14, except as noted. [‡] Relative photon intensity normalized to I γ (547 γ)=100 at E α =14 MeV (1971Mc14), except as noted.

% relative photon intensity from ratio: $I\gamma(308\gamma)/I\gamma(577\gamma)=14/86$ (1988St16).

^(a) From $\gamma(\theta)$ of deexciting γ in coincidence with backscattered beam ions (1988St16), except as noted.

& From $\gamma(\theta)$ measurements (1988St16), except as noted.

a Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

4

