¹⁹⁷Au(n,n'γ) **1971Ba29**

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Huang Xiaolong, Zhou Chunmei	NDS 104, 283 (2005)	1-Jan-2002		

Others: 1966Be14, 1968Bo52, 1971Ne01, 1986Jo11.

1971Ba29: E=0.4-1.3 MeV; timed semi γ spectra; Eγ, Iγ measured at E(n)=1.3, 1.2, 1.1, 1.03, 0.92, 0.82, 0.72, 0.4 MeV (1971Ba29); at E(n)=1.4,1.8,1.9,2.2 MeV (1971Ne01).

¹⁹⁷Au Levels

I γ -branching ratios of 1971Ba29 (E(n)=1.3 MeV) and 1971Ne01 (E(n)=1.4 MeV) are compared for consistency. I γ (n,n' γ)/ σ (n,n') ratios at E(n)=0.8-1.3 MeV are determined for E(levels)=0.50-1.24 MeV. Above threshold, intensity ratios are characteristic of populated levels but independent of incident E(n).

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0	3/2+	
77.4 <i>3</i>	$1/2^{+}$	
268.68 24	$(3/2^+)$	
278.8 <i>3</i>	5/2+	
502.5 5	$(3/2^+, 5/2^+)$	Branching: $I\gamma(425\gamma)/I\gamma(502\gamma)=0.025$ 7 (1971Ba29).
547.5 5	$(7/2^+)$	
736.7 5	7/2 ^{+#}	J^{π} : other: J=(7/2 ⁺) (1971Ba29).
		Branching: $I_{\gamma}(468\gamma)/I_{\gamma}(458\gamma) \approx 0.05 \ (1971Ba29)$ at $E(n) \ge 1$ MeV.
855.3 6	$(9/2^+)$	
888.1 4	$(1/2^+)$	Branching: $I_{\gamma}(619\gamma):I_{\gamma}(811\gamma):I_{\gamma}(888\gamma)=18\ 5:100:9\ 3\ (1971Ba29).$
936.0 <i>3</i>	$(5/2^+)$	Branching: $I\gamma(432\gamma)$: $I\gamma(657\gamma)$: $I\gamma(667\gamma)$: $I\gamma(858\gamma)$: $I\gamma(936\gamma)=24\ 5:20\ 4:61\ 8:25\ 6:100\ (1971Ba29),$ -:20:86:-:100 (1971Ne01).
1045.0 4	$(5/2^+)$	Branching: $I\gamma(766\gamma)$: $I\gamma(777\gamma)$: $I\gamma(1044\gamma)$ =100:69 <i>16</i> :48 <i>16</i> (1971Ba29), 100:50:- (1971Ne01).
1150.5 4	$(3/2^+, 5/2^+)$	Branching: $I_{\gamma}(882\gamma)$: $I_{\gamma}(1073\gamma)$: $I_{\gamma}(1151\gamma)$ =100:93 29: \approx 26 (1971Ba29), 100:89: <13 (1971Ne01).
1217.3 4	$(3/2^+)$	Branching: $I\gamma(1140\gamma)/I\gamma(1218\gamma)=0.62\ 25\ (1971Ba29)$.
1241.9 4	$(1/2^+)$	Branching: $I\gamma(973\gamma)/I\gamma(1242\gamma)\approx 0.17$ (1971Ba29), 0.55 (1971Ne01).

 † From Ey's and scheme by using least-squares fit to data.

[‡] Above 0.5 MeV, assignments are based on observed γ decays, Hauser-Feshbach calc, and unified-model predictions; except $J^{\pi}=7/2^+$ (from Adopted Levels) for E(level)=736.7.

From Adopted Levels.

$\gamma(^{197}{\rm Au})$

All data are from 1971Ba29.

Eγ	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π
77.4 5		77.4	$1/2^{+}$	0.0	3/2+
191.2 5		268.68	$(3/2^+)$	77.4	$1/2^{+}$
268.7 5		268.68	$(3/2^+)$	0.0	3/2+
278.8 5		278.8	5/2+	0.0	3/2+
308.0 [@] 5		855.3	$(9/2^+)$	547.5	$(7/2^+)$
^x 363.2 5					
^x 418.3 5	2.1 7				
425.0 [@] 5	2.5 7	502.5	$(3/2^+, 5/2^+)$	77.4	1/2+
432.5 [@] 5	3.9 7	936.0	$(5/2^+)$	502.5	$(3/2^+, 5/2^+)$

¹⁹⁷Au(n,n' γ) 1971Ba29 (continued)

				γ	(¹⁹⁷ Au) (conti
Eγ	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
457.7 5	57.4 15	736.7	7/2+	278.8	5/2+
468.1 5	1.1 7	736.7	$7/2^{+}$	268.68	$(3/2^+)$
502.5 5	100 2	502.5	$(3/2^+, 5/2^+)$	0.0	$3/2^+$
^x 535.4 5	11.9 9				
^x 539.0 5	3.4 6				
547.5 5	92.3 19	547.5	$(7/2^+)$	0.0	$3/2^{+}$
^x 557.7 5	1.7 6				
576.5 5	14.8 10	855.3	$(9/2^+)$	278.8	5/2+
619.0 5	2.7 7	888.1	$(1/2^+)$	268.68	$(3/2^+)$
^x 652.2 5	0.9 6				
657.1 5	3.2 6	936.0	$(5/2^+)$	278.8	5/2+
667.1 5	10.0 10	936.0	$(5/2^+)$	268.68	$(3/2^+)$
766.3 5	6.2 10	1045.0	$(5/2^+)$	278.8	5/2+
776.9 5	4.3 7	1045.0	$(5/2^+)$	268.68	$(3/2^+)$
810.8 5	15.2 12	888.1	$(1/2^+)$	77.4	$1/2^{+}$
858.6 5	4.0 9	936.0	$(5/2^+)$	77.4	$1/2^{+}$
^x 870.6 5	10.3 22				
881.9 [†] 5	5.8 11	1150.5	$(3/2^+, 5/2^+)$	268.68	$(3/2^+)$
888.3 5	1.4 [#] CA	888.1	$(1/2^+)$	0.0	$3/2^{+}$
936.2 5	16.3 14	936.0	$(5/2^+)$	0.0	3/2+
973.0 5	0.7 6	1241.9	$(1/2^+)$	268.68	$(3/2^+)$
^x 986.0 5	1.4 9				
1044.2 5	3.0 13	1045.0	$(5/2^+)$	0.0	3/2+
^x 1055.1 4	0.8 7				
1073.4 [†] 5	5.4 13	1150.5	$(3/2^+, 5/2^+)$	77.4	$1/2^{+}$
1139.5 5	4.2 14	1217.3	$(3/2^+)$	77.4	1/2+
1150.2 [†] 5	1.5 13	1150.5	$(3/2^+, 5/2^+)$	0.0	$3/2^{+}$
1217.7 5	6.8 16	1217.3	$(3/2^+)$	0.0	$3/2^{+}$
1242.2 5	4.2 14	1241.9	$(1/2^+)$	0.0	3/2+

[†] Possible doublet. [‡] Photon intensity relative to $I\gamma(502.5\gamma)=100$ at E(n)=1300 keV. [#] Calc from $I\gamma$ -branching at E(n)=1.2 MeV (1971Ba29). [@] Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

inued)

 $^{197}_{~79}\rm{Au}_{118}$