Adopted Levels, Gammas

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Huang Xiaolong	NDS 108,1093 (2007)	1-Jan-2006						

 $Q(\beta^{-})=-2136 \ 19$; $S(n)=7413 \ 17$; $S(p)=3.79\times10^{3} \ 3$; $Q(\alpha)=2854 \ 20 \ 2012Wa38$ Note: Current evaluation has used the following Q record -2136 197413 183786 262855 20 2003Au03. Nuclear structure calculation: 1978Ya09, 1979Pa14, 1979To17, 1980Kr03, 1980Kr20, 1990Va15, 1991Sa12. Hyperfine structure and isotope shift measurements: 1989MeZZ, 1989MeZV, 1990Di09, 1992Me07. Cross section and yield measurements: 1982Si11, 1984ShZP, 1989DaZS.

¹⁹⁶Tl Levels

Cross Reference (XREF) Flags

¹⁹⁶Tl IT decay (1.41 h) A

В

¹⁹⁶Pb ε decay (37 min) ¹⁹⁷Au(α ,5n γ),¹⁹⁴Pt(⁶Li,4n γ) С

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0.0	2-	1.84 h <i>3</i>	ABC	
191.7 4	0-		В	J^{π} : 191.7 γ E2 to 2 ⁻ , fed with log <i>ft</i> =6.37 from J^{π} =0 ⁺ , and systematics of even-A ¹⁹⁸ Tl, ²⁰⁰ Tl.
240.2 <i>4</i> 253.2 <i>4</i> 274.1 <i>4</i> 366.5 <i>5</i> 394.2 <i>5</i>	$(2)^{-}$ 1^{-} (3^{-}) 1^{-} (7^{+})	1.41 h 2	AB B A B A	J ^{π} : 240 γ M1+E2 to 2 ⁻ gives 1 ⁻ ,2 ⁻ ,3 ⁻ . J ^{π} : 253 γ M1 to 2 ⁻ , fed with log <i>ft</i> =6.27 from J ^{π} =0 ⁺ . J ^{π} : 274.6 γ (M1) to 2 ⁻ , no γ to 0 ⁻ 191.7 level, absence in ¹⁹⁶ Pb ε decay spectrum. J ^{π} : 366.5 γ M1 to 2 ⁻ , fed with log <i>ft</i> =5.93 from J ^{π} =0 ⁺ . $\% \varepsilon + \% \beta^+ = 96.2$ 4; $\%$ IT=3.8 4 Branching: Based upon the assumption that essentially all ε decays go through the 84(E2) transition in ¹⁹⁶ Hg and all IT decays go through the 120(M4) transition in ¹⁹⁶ Tl; ce(L3)(84)/ce(L3)(120)=16.9 <i>17</i> (1960Ju01), and using theoretical conversion coefficients with 1.5 $\%$ uncertainties. μ =+0.549 8 (1992Me07).
				Q=+0.763 2 <i>I</i> (1992Me07). J^{π} : 120.1 γ M4 to (3 ⁻). T _{1/2} : from 1960Ju01.
493.9 <i>4</i> 638.1 <i>6</i>	1-	2.5 ns	B C	$J^{\pi_{1}^{2}}$ 493.9 γ M1 to 2 ⁻ , fed with log <i>ft</i> =6.20 from J^{π} =0 ⁺ . T _{1/2} : from $\gamma\gamma(t)$ (1978Kr12). $J^{\pi_{1}^{2}}$ 244 γ to (7 ⁺).
738.1 [‡] 6	(8-)	21.3 ns 5	С	J^{π} : 343.9 γ E1(+M2) to (7 ⁺). Bandhead, because the 343.9 γ is the strongest line and it is in delayed coincidence with all the other members of the γ -ray cascade. T ₁ (γ : from time distributions of 343.9 γ (1978Kr12).
738.1+x?	(9 ⁻)		С	E(level): level energy held fixed in least-squares adjustment. J^{π} : based on rotational structure of negative-parity band.
755.3 <i>4</i> 799.5 7	(1 ⁻)		B C	J^{π} : fed with log <i>ft</i> =5.58 from 0 ⁺ , 755 γ (M1) to 2 ⁻ .

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹⁹⁶Tl Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
799.6+x [‡] 3	(10 ⁻)	С	J^{π} : from 61.5 γ D+Q to (9 ⁻), negative-parity band member.
908.4+x [‡] 4	(11^{-})	С	J^{π} : 108.6 γ D+Q to (10 ⁻), negative-parity band member.
954.2 5	(1 ⁻)	В	J^{π} : fed with log <i>ft</i> =6.11 from 0 ⁺ , 954 γ (M1) to 2 ⁻ .
1179.7+x [‡] 4	(12^{-})	С	J^{π} : 271.4 d+Q γ to (11 ⁻).
1274.8 7		С	
1416.1+x [‡] 4	(13 ⁻)	С	J^{π} : 236.4 γ D+Q to (12 ⁻), negative-parity band member.
1544.6 7		С	
1812.9+x [‡] 4	(14 ⁻)	С	J^{π} : 396.9 γ D+Q to (13 ⁻), negative-parity band member.
1995.8 7		C	
$2079.6 + x^{\ddagger} 5$	(15 ⁻)	С	J^{π} : 266.7 γ D+Q to (14 ⁻), negative-parity band member.
2171.2+x 5		C	
2222.8 / 2335.1 L x 6		C	
2527.3+x 6		c	
2527.4+x [‡] 5	(16 ⁻)	c	J^{π} : 447.8 γ D+Q to (15 ⁻), negative-parity band member.
2760.3+x [‡] 5	(17^{-})	С	J^{π} : from 233.1 γ D+O to (16 ⁻), negative-parity band member.
2846.8+x 7	· · ·	С	
3045.6+x [‡] 6	(18 ⁻)	С	J^{π} : 285.3 γ D+Q to (17 ⁻), negative-parity band member.
3163.5+x 8		С	
3334.6+x [‡] 7	(19 ⁻)	С	J^{π} : 289.0 γ M1+E2 to (18 ⁻), negative-parity band member.
3500.1+x?		С	
3523.4+x [‡] 7	(20 ⁻)	С	J^{π} : 188.8 γ M1+E2 to (19 ⁻), negative-parity band member.
3629.8+x? [‡] 8	(21 ⁻)	С	J^{π} : 106.4 γ M1+E2 to (20 ⁻), negative-parity band member.

[†] From least-squares fit to $E\gamma$'s. [‡] Band(A): the negative-parity band.

						Adopte	ed Levels, Gammas	s (continued)
							γ (¹⁹⁶ Tl)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [#]	δ #	α@	Comments
191.7	0-	191.7 [‡] 5	100	0.0 2-	E2		0.474 8	 α(K)=0.187 3; α(L)=0.215 4; α(M)=0.0558 10; α(N+)=0.0165 3 Mult.: K:L2:L3:M:N=13 2:9 2:6 2:8 2:1.5 7 (1961Sv01). K/L=0.8 2, L2/L3=1.7 6, L/M=2.1 8, M/N=5 2 (1961Sv01). E2 theory: K/L=0.87, L2/L3=1.6. ce(K)(191.8)/ce(K)(253.2)=0.13 2 (1961Sv01). Mult.: M1 from 1982Hi04.
240.2	(2)-	240.0 [‡] 5	30 5	0.0 2-	M1+E2	<0.6	0.66 7	$\begin{array}{l} \alpha(\mathrm{K}){=}0.53\ 7;\ \alpha(\mathrm{L}){=}0.098\ 3;\ \alpha(\mathrm{M}){=}0.0232\ 5;\ \alpha(\mathrm{N}{+}){=}0.00709\ 15\\ \mathrm{Mult.,}\delta:\ \mathrm{based\ upon\ ce\ ratios:\ K(240)/K(253){=}0.34\ 4,\ \mathrm{ce}(\mathrm{L}){\leq}12\\ (1961\mathrm{Sv01});\ \mathrm{K}(240)/\mathrm{L3}(120){\leq}0.23\ (1960\mathrm{Ju01}).\ \mathrm{M1\ theory:}\\ \alpha(\mathrm{K})/\alpha(\mathrm{L}){=}5.8,\ \alpha(\mathrm{K})/\alpha(\mathrm{L3}){=}850;\ \mathrm{E2\ theory:}\ \alpha(\mathrm{K})/\alpha(\mathrm{L}){=}1.3,\\ \alpha(\mathrm{K})/\alpha(\mathrm{L3}){=}4.4. \end{array}$
253.2	1-	253.1 [‡] 5	100	0.0 2-	M1		0.625	α (K)=0.512 8; α (L)=0.0867 13; α (M)=0.0202 3; α (N+)=0.00620 10 Mult.: the strongest ce line in ¹⁹⁶ Pb ε decay. M1 theory: K/L=5.90, L/M=4.3, α (K)=0.5321; E1 theory: K/L=5.87, L/M=4.3, α (K)=0.03523.
274.1	(3 ⁻)	33.7 3		240.2 (2)-	[E2]		$1.02 \times 10^3 5$	ce(L)/(γ +ce)=0.75 3; ce(M)/(γ +ce)=0.194 12; ce(N+)/(γ +ce)=0.057 4 E _{γ} : from ¹⁹⁶ T1 IT decay only. Mult : Lee(L1)(33 7)/Lee(L3)(120 1)=0.25 10 (1960)(01)
		274.6 6		0.0 2-	(M1)		0.500 8	ce(K)/(γ+ce)=0.273 4; ce(L)/(γ+ce)=0.0461 8; ce(M)/(γ+ce)=0.01077 18; ce(N+)/(γ+ce)=0.00330 6 E _γ : from ¹⁹⁶ T1 IT decay. Mult.: supported by Ice(K)(274.6)/Ice(L3)(120.1)=0.50 10; K/L≥6(1960Ju01); M1 theory: K/L=5.9.
366.5	1-	113 ^{‡&} 1	2.4 10	253.2 1-	[M1]		6.06 18	α (K)=4.95 <i>15</i> ; α (L)=0.85 <i>3</i> ; α (M)=0.199 <i>6</i> ; α (N+)=0.0608 <i>18</i> Mult.: supported by ce(K)(113)/ce(K)(253)=0.10 <i>3</i> (1961Sv01).
		126 ^{‡&} 1	2.0 7	240.2 (2)-	[M1]		4.44 12	α (K)=3.63 <i>10</i> ; α (L)=0.622 <i>17</i> ; α (M)=0.145 <i>4</i> ; α (N+)=0.0445 <i>12</i> Mult.: supported by ce(K)(126)/ce(K)(253)=0.06 2 (1961Sv01).
		175 ^{‡&} 2	73	191.7 0-	[M1]		1.75 7	α (K)=1.43 6; α (L)=0.244 9; α (M)=0.0570 21; α (N+)=0.0174 7 Mult.: supported by ce(K)(175)/ce(K)(253)=0.08 3 (1961Sv01).
		366.5 [‡] 5	100 15	0.0 2-	M1		0.228	α(K)=0.187 3; α(L)=0.0314 5; α(M)=0.00732 11; α(N+)=0.00224 4 Mult.: based upon ce ratios: K/L>5, ce(K)(367)/ce(K)(253)=0.18 6 (1961Sv01); M1 theory: K/L=5.92.
394.2	(7+)	120.1 3	100	274.1 (3 ⁻)	M4		2.30×10 ³ 5	 ce(K)/(γ+ce)=0.0676 17; ce(L)/(γ+ce)=0.649 12; ce(M)/(γ+ce)=0.216 6; ce(N+)/(γ+ce)=0.0671 20 B(M4)(W.u.)=4.01 16 α: M4 α(theory)'s mult. By 0.975 5 (Cf. 1990Ne01). Mult.: supported by K:L:M:N=0.14 7:1.00:0.33 3:0.13 3 and L1:L2:L3=0.36 7:0.14 5:1.00 (1960Ju01); M4 theory: K:L:M=0.11:1.0:0.33, L1:L2:L3=0.37:0.078:1.0.
493.9	1-	127 ^{‡&} 1	4.3 19	366.5 1-	[M1]		4.34 12	α (K)=3.55 <i>10</i> ; α (L)=0.608 <i>17</i> ; α (M)=0.142 <i>4</i> ; α (N+)=0.0435 <i>12</i> K(127)/K(253.2)=0.06 <i>2</i> (1961Sv01).

ω

н

Adopted Levels, Gammas (continued)										
γ ⁽¹⁹⁶ Tl) (continued)										
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α [@]	Comments	
493.9	1-	241 ^{‡&} 2	17 5	253.2	1-	[M1]		0.716 20	α (K)=0.586 <i>16</i> ; α (L)=0.099 <i>3</i> ; α (M)=0.0232 <i>7</i> ; α (N+)=0.00710 <i>20</i> K(241)/K(253.2)=0.04 <i>1</i> (1961Sv01).	
		302.2 [‡] 5	67 19	191.7	0-	M1		0.384	$\alpha(K)=0.315\ 5;\ \alpha(L)=0.0531\ 8;\ \alpha(M)=0.01240\ 19;\ \alpha(N+)=0.00380\ 6$ Mult.: based upon ce ratios; ce(K)(302)/ce(K)(253.2)=0.012\ 5 (1961Sy01)	
		493.9 [‡] 5	100 <i>19</i>	0.0	2-	M1		0.1027	$\alpha(K)=0.0844 \ I2; \ \alpha(L)=0.01406 \ 20; \ \alpha(M)=0.00327 \ 5; \ \alpha(N+)=0.001003 \ I5$ Mult.: based upon ce ratios; ce(K)(494)/ce(K)(253.2)=0.04 2 (1961Sv01).	
638.1 738.1	(8 ⁻)	243.9 <i>3</i> 343.9 <i>3</i>	100 100	394.2 394.2	(7 ⁺) (7 ⁺)	E1+M2	-0.14 +4-7	0.039 22	$\alpha(K)=0.031 \ 17; \ \alpha(L)=0.006 \ 4; \ \alpha(M)=0.0014 \ 10; \ \alpha(N+)=0.0004 \ 3$	
738.1+x?	(9 ⁻)	Х		738.1	(8 ⁻)	[M1]			$B(E1)(w.u.)=2.18\times10^{-7}$; $B(M2)(w.u.)=0.1770$ E_{γ} : $E_{\gamma}<34$ keV.	
755.3	(1-)	502.1 [‡] 5	100 8	253.2	1-	(M1)		0.0984	α (K)=0.0808 <i>12</i> ; α (L)=0.01345 <i>20</i> ; α (M)=0.00313 <i>5</i> ; α (N+)=0.000959 <i>14</i>	
		515.2 [‡] 5	5.1 25	240.2	(2) ⁻	(M1)		0.0919	α (K)=0.0755 <i>11</i> ; α (L)=0.01256 <i>18</i> ; α (M)=0.00293 <i>5</i> ; α (N+)=0.000896 <i>13</i>	
		755.2 [‡] 8	73	0.0	2-	(M1)		0.0339	α (K)=0.0279 4; α (L)=0.00458 7; α (M)=0.001066 16; α (N+)=0.000326 5	
799.5	(10-)	161.4 3	100	638.1	(0-)	D+Q	-0.16 +6-284	2.3 13		
799.6+x 908 4+x	(10) (11^{-})	01.5 3 108 6 3	100	/38.1+X? 799.6+x	(9) (10^{-})	D+Q D+O	-0.18 + 14 - 7 -0.05 + 1 - 2	8.315 7.068-7		
954.2	(1 ⁻)	701.0 [‡] 8	47 20	253.2	1-	(M1)	0.00 11 2	0.0411	α (K)=0.0338 5; α (L)=0.00557 8; α (M)=0.001296 19; α (N+)=0.000397 6	
		714.1 [‡] 8	20 10	240.2	(2)-	(M1)		0.0391	$\alpha(K)=0.0322 5; \alpha(L)=0.00531 8; \alpha(M)=0.001234 18; \alpha(N+)=0.000378 6$	
		954.1 [‡] 8	100 25	0.0	2-	(M1)		0.0186	α (K)=0.01531 22; α (L)=0.00250 4; α (M)=0.000580 9; α (N+)=0.000178 3	
1179.7+x	(12 ⁻)	271.4 <i>3</i> 380.3 <i>3</i>	100 7.0	908.4+x 799.6+x	(11 ⁻) (10 ⁻)	D+Q	-0.45 +10-25	0.47 7		
1274.8	(1.2-)	475.3 2	100	799.5	(1 -)	D+Q	-1.1 +6-4	0.07 3		
1416.1+x	(13 ⁻)	236.4 <i>3</i> 507.6 2	100 58	1179.7+x 908.4+x	(12^{-}) (11^{-})	D+Q	-0.44 +8-11	0.70 4		
1544.6		269.8°	100	1274.8						
1812.9+x	(14 ⁻)	396.9 <i>3</i> 633.3 <i>2</i>	100 100 41	1416.1+x 1179.7+x	(13 ⁻) (12 ⁻)	D+Q	-0.62 +9-23	0.152 20		

4

From ENSDF

 $^{196}_{81}\mathrm{Tl}_{115}\text{-}4$

 $^{196}_{81}\mathrm{Tl}_{115}$ -4

Т

γ ⁽¹⁹⁶Tl) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{\#}$	α [@]
1995.8		451.3 2	100	1544.6	D+O	-0.6 + 2 - 13	0.11 6
		721.0 2	100	1274.8			
2079.6+x	(15^{-})	266.7 <i>3</i>	43	1812.9+x (14 ⁻)	D+Q	-0.31 +8-7	0.528 16
		663.3 2	100	1416.1+x (13 ⁻)			
2171.2+x		991.5 2	100	1179.7+x (12 ⁻)			
2222.8		227.3 <i>3</i>	53	1995.8	D(+Q)	0.00 10	
		678.1 2	100	1544.6			
2335.1+x		163.9 <i>3</i>	100	2171.2+x	D+Q	-0.25 + 5 - 7	2.11 5
2527.3+x		192.2 <i>3</i>	100	2335.1+x	D+Q	-0.78 + 23 - 70	1.0 3
		356.0 <mark>&</mark>		2171.2+x			
2527.4+x	(16 ⁻)	447.8 2	100	2079.6+x (15 ⁻)	D+Q	-0.55 + 6 - 12	0.115 8
		714.6 2	91	1812.9+x (14 ⁻)			
2760.3+x	(17^{-})	233.1 <i>3</i>	45	2527.4+x (16 ⁻)	D+Q	-0.27 + 8 - 7	0.777 21
		680.6 2	100	2079.6+x (15 ⁻)			
2846.8+x		319.5 <i>3</i>	100	2527.3+x	D+Q	-0.78 + 18 - 65	0.25 8
3045.6+x	(18^{-})	285.3 <i>3</i>	100	2760.3+x (17 ⁻)	D+Q	-0.07 2	0.4663 11
3163.5+x		316.7 <i>3</i>	100	2846.8+x	D+Q	-0.18 +4-3	0.344 4
3334.6+x	(19 ⁻)	289.0 <i>3</i>	100	3045.6+x (18 ⁻)	D+Q	-0.46 +16-21	0.39 5
3500.1+x?		336.2 ^{&} 3	100	3163.5+x	D+Q	-0.14 5	0.295 4
3523.4+x	(20^{-})	188.8 <i>3</i>	100	3334.6+x (19 ⁻)	D+Q	-0.12 4	1.453 11
3629.8+x?	(21^{-})	106.4 <i>3</i>	100	3523.4+x (20 ⁻)	D+Q	-0.07 + 4 - 3	7.487 15

[†] From ¹⁹⁷Au(α ,5n γ) unless otherwise specified. [‡] From ¹⁹⁶Pb ε decay (37 min).

S

[#] From $\gamma(\theta)$ analysis of data unless indicated otherwise.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified. [&] Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas Legend Level Scheme Intensities: Relative photon branching from each level $--- - - - - - - \gamma$ Decay (Uncertain) - 100.4 Dx0 100 (21-) <u>3629.8+x</u> (20-) 3523.4+x + 289.02x ---<u>3500.1+x</u> + 316,2 02,0 (19⁻) 3334.6+x 3163.5+x 1 3195 Dx01 $\frac{1}{3} \frac{s_0!}{s_{3,1}!} \frac{t_{0,0}}{t_{0,0}}$ (18⁻) 3045.6+x $\left| \begin{array}{c} 2^{2/4} e^{g_{g_{1}}} \\ e^{2g_{2}} e^{g_{2}} \\ e^{2g_{2}} e^{2g_{2}} \\ e^{2g_{2}} e^{2g_{2}} \end{array} \right|_{g_{2}}$ 2846.8+x (17^{-}) - 1 350 2760.3+x (16^{-}) 4 163.9 240 | 1 2527.4+x $\left| \frac{1}{\left| \frac{\sigma_{\mathcal{X}_{1}}}{2^{2}_{2}} \right|^{q_{0}}} \right|^{1}$ 2527.3+x 001 5.10 2335.1+x 0×0×0×0 2222.8 8. - 30⁶ | 2171.2+x - 663 | -Ż 2079.6+x (15^{-}) 1995.8 (14^{-}) 1812.9+x $= \frac{3_{2_{2_{6_{3_{6}}}}}}{3_{2_{3_{6}}}}}{= \frac{3_{2_{5_{6}}}}{3_{6}}}{1+0}$ 1 245,2 100 4 269,8 1544.6 001 01 02 01 (13^{-}) 1416.1+x 475.3 1274.8 (12⁻) 1179.7+x (11⁻) 908.4+x 799.5 0.0 1.84 h 3 2

 $^{196}_{81}{\rm Tl}_{115}$

 $^{196}_{81}{\rm Tl}_{115}$

Adopted Levels, Gammas

Band(A): The negative-parity band

