¹⁹⁵Pt(\mathbf{n}, γ) E=2 keV: av res 1979Ci04

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Huang Xiaolong	NDS 108, 1093 (2007)	1-Jan-2006

Data supersede author's earlier data in 1978Ci02.

Natural and enriched (97.28% in ¹⁹⁵Pt) target. $J^{\pi}(^{195}Pt)=1/2^{-}$. Used a scandium filter to yield a 2-keV neutron beam with an

energy spread of 850 eV FWHM and reduced the variance of the reduced partial widths in the distribution of primary intensities by 20-25%. Measured Ey, Iy,Ge(Li) three-crystal pair spectrometer.

Additional information 1.

¹⁹⁶Pt Levels

Since the spins of capture states for s-wave capture are 0⁻ and 1⁻, E1 primary transitions will populate low-lying 0⁺, 1⁺ and 2⁺ levels. Only the 1⁺ levels can Be reached from both capture state spins, thus the primary transitions to them should, on the average, Be twice As intense As those to 0^+ or 2^+ levels. M1 transitions to negative-parity levels will, on the average, Be a factor of ≈ 6 weaker In intensity.

The spin and parity assignments are based on the following criteria:

J $^{\pi}$	$I\gamma/E\gamma^5$ a
1 ⁺ ,(0 ⁺ ,2 ⁺) b	≥ 1.7
$0^+, 1^+, 2^+$	\geq 1.0 and < 1.7
$0^+, 2^+, (1^+)$	\geq 0.8 and < 1.0
0^+ , 2^+ , (0^- , 1^- , 2^-)	< 0.8

a relative reduced intensity of primary gamma-ray from 2-keV average resonance neutron capture states.

b possible doublet

E(level) [†]	$J^{\pi \ddagger}$	$I\gamma/E\gamma^{5\#}$	Comments
0.0	$0^+, 2^+, (1^+)$	0.94	
355.3 7	$0^+, 2^+, (1^+)$	0.97	
688.2 7	$0^+, 1^+, 2^+$	1.23	
1135.0 8	$0^+, 2^+, (0^-, 1^-, 2^-)$	0.77	
1361.1 8	$0^+, 1^+, 2^+$	1.12	
1402.3 8	$0^+, 2^+, (1^+)$	0.85	
1603.9 8	$0^+, 2^+, (1^+)$	0.96	
1676.8 8	$0^+, 2^+, (1^+)$	0.83	
1795.1 <i>10</i>	$0^+, 2^+, (0^-, 1^-, 2^-)$	0.53	
1802.2 9	$0^+, 1^+, 2^+$	1.00	
1822.8 8	$0^+, 1^+, 2^+$	1.01	
1846.9 9	$0^+, 1^+, 2^+$	1.01	
1852.9 10	$0^+, 2^+, (0^-, 1^-, 2^-)$	0.64	
1887.3 8	$1^+,(0^+,2^+)$	1.74	E(level): possible doublet.
1917.8 9	$0^+, 2^+, (1^+)$	0.81	
1931.9 8	$0^+, 1^+, 2^+$	1.27	
1968.3 8	$1^+,(0^+,2^+)$	1.75	E(level): possible doublet.
1984.6 8	$0^+, 1^+, 2^+$	1.40	
2000.1 10	$0^+, 2^+, (0^-, 1^-, 2^-)$	0.54	
2010.6 10	$0^+, 2^+, (0^-, 1^-, 2^-)$	0.57	
2046.6 8	$1^+,(0^+,2^+)$	1.86	E(level): possible doublet.

¹⁹⁵Pt(\mathbf{n}, γ) E=2 keV: av res 1979Ci04 (continued)

¹⁹⁶Pt Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$I\gamma/E\gamma^{5\#}$	Comments
2068.9.8	$0^+, 1^+, 2^+$	1.47	
2091.9 8	$1^+.(0^+.2^+)$	2.25	E(level): possible doublet.
2126.8 9	$0^+.1^+.2^+$	1.25	-(), F
2160.8 8	$0^+.1^+.2^+$	1.70	E(level): possible doublet.
2173.6 9	$0^+, 2^+, (0^-, 1^-, 2^-)$	0.76	
2182.7 8	$0^+, 1^+, 2^+$	1.52	
2199.0 11	$0^+, 2^+, (1^+)$	0.81	
2203.8 11	$0^+, 2^+, (1^+)$	0.87	
2229.1 8	$0^+, 1^+, 2^+$	1.54	
2245.0 8	$1^+, (0^+, 2^+)$	1.71	E(level): possible doublet.
2262.2 9	$0^+, 2^+, (1^+)$	0.86	
2270.1 9	$0^+, 1^+, 2^+$	1.23	
2309.2 9	$0^+, 1^+, 2^+$	1.38	
2323.7 9	$0^+, 1^+, 2^+$	1.18	
2344.4 9	$0^+, 1^+, 2^+$	1.20	
2366.3 9	$0^+, 1^+, 2^+$	1.50	
2373.8 9	$0^+, 1^+, 2^+$	1.39	
2382.4 9	$0^+, 1^+, 2^+$	1.17	
2400.1 9	$0^+, 2^+, (1^+)$	0.99	
2421.1 9	$0^+, 1^+, 2^+$	1.53	
2443.0 9	$0^+, 2^+, (1^+)$	0.99	
2459.0 9	$0^+, 1^+, 2^+$	1.00	
2469.4 9	$0^+, 1^+, 2^+$	1.47	
2487.4 10	$0^+, 1^+, 2^+$	1.03	
2493.2 10	$0^+, 1^+, 2^+$	1.12	
2503.8 10	$0^+, 2^+, (0^-, 1^-, 2^-)$	0.69	
2527.9 8	$1^+, (0^+, 2^+)$	2.10	E(level): av res capture feeds a possible doublet with another member having $E=2529.3$ 3.
2529.3 3	1+,(0+,2+)	2.10	E(level): av res capture feeds a possible doublet with another member having E=2527.831 <i>34</i> .
2553.3 10	$0^+, 2^+, (0^-, 1^-, 2^-)$	0.67	
2570.8 9	$0^+, 1^+, 2^+$	1.23	
2586.9 9	$0^+, 1^+, 2^+$	1.20	
2599.1 11	$0^+, 2^+, (0^-, 1^-, 2^-)$	0.58	
2606.8 10	$0^+, 2^+, (1^+)$	0.99	
2614.4 9	$0^+, 1^+, 2^+$	1.04	
2629.9 10	$0^+, 2^+, (0^-, 1^-, 2^-)$	0.72	
2658.3 9	$0^+, 1^+, 2^+$	1.56	
2665.9 9	$0^+, 1^+, 2^+$	1.37	
7923.2 5	0-,1-		J^{π} : from s-wave neutron capture.

[†] From primary gammas by using least-squares fit to $E\gamma'$ s. [‡] Capture by s-wave neutrons in ¹⁹⁵Pt can lead to a J^{π}=0⁻, 1⁻ level. E1 deexcitation from a 1⁻ level can populate 0⁺, 1⁺, 2⁺ levels; E1 deexcitation from a 0⁻ level will primarily populate 1⁺ levels. M1 to negative-parity levels will be ≈ 6 weaker in intensity. From reduced intensities I=I γ /E γ ⁵ convention: I \geq 1.7, J^{π}=1⁺,(0⁺,2⁺), possible doublet (D); 1.0 \leq I<1.7, J^{π}=0⁺,1⁺,2⁺; $0.8 \le I < 1.0, J^{\pi} = 0^+, 2^+, (1^+); I < 0.8, J^{\pi} = 0^+, 2^+, (0^-, 1^-, 2^-).$

[#] Relative reduced intensity of primary γ -ray from 2-keV average resonance neutron capture states.

¹⁹⁵Pt(\mathbf{n},γ) E=2 keV: av res 1979Ci04 (continued)

 $\gamma(^{196}\text{Pt})$

Only given the primary gammas.

Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Comments
5257 3 7	19.3	7923 2	$0^{-} 1^{-}$	$2665.9 0^+ 1^+ 2^+$	$I_{\nu}/E_{\nu}^{5}=1.37$
5264.9.7	22.3	7923.2	$0^{-}.1^{-}$	$2658.3 0^+.1^+.2^+$	$I_{\gamma}/E_{\gamma}^{5} = 1.56$
5293.3 8	10.2	7923.2	$0^{-}.1^{-}$	$2629.9 0^+.2^+.(0^1^2^-$	$1/2^{5} = 0.72.$
5308.8 7	15.2	7923.2	$0^{-}.1^{-}$	$2614.4 0^+.1^+.2^+$	$I_{\gamma}/E_{\gamma}^{5} = 1.04$
5316.4 8	14 2	7923.2	$0^{-}.1^{-}$	$2606.8 0^+.2^+.(1^+)$	$I_{\gamma}/E_{\gamma}^{5}=0.99.$
5324.1 9	92	7923.2	$0^{-}.1^{-}$	2599.1 0+.2+.(012-	$I_{\nu}/E_{\nu}^{5}=0.58.$
5336.3 7	18 2	7923.2	$0^{-}.1^{-}$	2586.9 0+.1+.2+	$I_{\gamma}/E_{\gamma}^{5}=1.20.$
5352.4 7	18 3	7923.2	$0^{-}, 1^{-}$	2570.8 0+,1+,2+	$I_{\gamma}/E_{\gamma}^{5}=1.23.$
5369.9 8	10 2	7923.2	$0^{-}, 1^{-}$	2553.3 0+,2+,(0-,1-,2-	I) $I_{\gamma}/E_{\gamma}^{5}=0.67.$
5395.3 6	33 4	7923.2	$0^{-}, 1^{-}$	$2527.9 \ 1^+, (0^+, 2^+)$	$I_{\gamma}/E_{\gamma}^{5}=2.10.$
5419.4 8	11 3	7923.2	$0^{-}, 1^{-}$	2503.8 0+,2+,(0-,1-,2-	I) $I\gamma/E\gamma^5 = 0.69.$
5430.0 8	18 <i>3</i>	7923.2	$0^{-}, 1^{-}$	2493.2 0+,1+,2+	$I_{\gamma}/E_{\gamma}^{5}=1.12.$
5435.8 8	17 <i>3</i>	7923.2	$0^{-}, 1^{-}$	2487.4 0+,1+,2+	$I\gamma/E\gamma^5=1.03.$
5453.8 7	24 <i>3</i>	7923.2	$0^{-}, 1^{-}$	2469.4 0+,1+,2+	$I\gamma/E\gamma^5=1.47.$
5464.2 7	17 <i>3</i>	7923.2	$0^{-}, 1^{-}$	2459.0 0+,1+,2+	$I\gamma/E\gamma^5=1.00.$
5480.2 7	17 <i>3</i>	7923.2	$0^{-}, 1^{-}$	2443.0 0 ⁺ ,2 ⁺ ,(1 ⁺)	$I\gamma/E\gamma^5=0.99.$
5502.1 7	26 <i>3</i>	7923.2	$0^{-}, 1^{-}$	2421.1 0+,1+,2+	$I\gamma/E\gamma^5=1.53.$
5523.1 7	17 2	7923.2	$0^{-}, 1^{-}$	2400.1 0+,2+,(1+)	$I\gamma/E\gamma^5=0.99.$
5540.8 7	21 3	7923.2	$0^{-}, 1^{-}$	2382.4 0+,1+,2+	$I\gamma/E\gamma^5=1.17.$
5549.4 7	25 <i>3</i>	7923.2	$0^{-}, 1^{-}$	2373.8 0+,1+,2+	$I\gamma/E\gamma^5=1.39.$
5556.9 7	27 3	7923.2	$0^{-}, 1^{-}$	2366.3 0+,1+,2+	$I\gamma/E\gamma^5=1.50.$
5578.7 7	22 3	7923.2	$0^{-}, 1^{-}$	2344.4 0+,1+,2+	$I\gamma/E\gamma^5 = 1.20.$
5599.5 7	22 <i>3</i>	7923.2	$0^{-}, 1^{-}$	2323.7 0+,1+,2+	$I\gamma/E\gamma^5=1.18.$
5614.0 7	26 <i>3</i>	7923.2	$0^{-}, 1^{-}$	2309.2 0+,1+,2+	$I\gamma/E\gamma^5=1.38.$
5653.07	24 <i>3</i>	7923.2	$0^{-}, 1^{-}$	2270.1 0+,1+,2+	$I\gamma/E\gamma^5 = 1.23.$
5661.0 7	17 <i>3</i>	7923.2	$0^{-}, 1^{-}$	2262.2 $0^+, 2^+, (1^+)$	$I\gamma/E\gamma^{5}=0.86.$
5678.1 6	34 4	7923.2	$0^{-}, 1^{-}$	2245.0 $1^+, (0^+, 2^+)$	$I\gamma/E\gamma^{2}=1.71.$
5694.0 6	31 4	7923.2	$0^{-}, 1^{-}$	2229.1 0+,1+,2+	$I\gamma/E\gamma^{2}=1.54.$
5719.3 9	18 4	7923.2	$0^{-}, 1^{-}$	2203.8 0+,2+,(1+)	$I\gamma/E\gamma^3=0.87.$
5724.2 9	17 4	7923.2	0-,1-	2199.0 0+,2+,(1+)	$1\gamma/E\gamma^3=0.81.$
5740.5 6	32.4	7923.2	$0^{-}, 1^{-}$	2182.7 0+,1+,2+	$1\gamma/E\gamma^3 = 1.52.$
5/49.5 7	16 3	7923.2	$0^{-}, 1^{-}$	$21/3.6 0^+, 2^+, (0^-, 1^-, 2^-)$	1) $1\gamma/E\gamma^{3}=0.76$.
5762.3 6	374	7923.2	$0^{-}, 1^{-}$	2160.8 0+,1+,2+	$1\gamma/E\gamma^{3} = 1.70.$
5796.37	28.3	7923.2	$0^{-}, 1^{-}$	2126.8 0+,1+,2+	$1\gamma/E\gamma^{3} = 1.25.$
5831.2.6	52.5	7923.2	0,1	2091.9 1, (0, 2)	$1\gamma/E\gamma^{3} = 2.25$.
5854.2.6	34 4	7923.2	0,1	2068.9 0,1,2,2	$1\gamma/E\gamma^{3} = 1.4/.$
58/6.6 0	44 4	7923.2	0,1	$2046.6 1^+, (0^+, 2^+)$	$1\gamma/E\gamma^2 = 1.86.$
5912.5 8	14 3	7923.2	0,1	2010.6 0 ⁺ ,2 ⁺ ,(0 ,1 ,2) $1\gamma/E\gamma^{3}=0.57$.
5923.1 8	13 3	7923.2	0,1	$2000.1 0^+, 2^+, (0^-, 1^-, 2^-)$) $1\gamma/E\gamma^2 = 0.34$.
5938.5 0	35 4 45 4	7923.2	0,1	$1984.0 \ 0^{+}, 1^{+}, 2^{+}$	$1\gamma/E\gamma^{2} = 1.40.$
5001.2 6	45 4	7923.2	0,1	$1908.5 1^{\circ}, (0^{\circ}, 2^{\circ})$	$I\gamma/E\gamma^{2} = 1.75$.
5991.2 0 (005.2 7	33 4 22 2	7923.2	0,1 0-1-	$1931.9 \ 0^+, 1^+, 2^+$	$1\gamma/E\gamma^{2} = 1.27$.
6025.8 4	22 S 47 S	1923.2 7022.2	0,1 0-1-	$1917.0 \cup 2, (1^{\circ})$ 1997.2 + (0+2+)	$r_{1}/r_{2} = 0.81.$
6070.2.9	4/J 192	1923.2 7022.2	0,1	$1007.3 1^{-}, (0^{-}, 2^{+})$ 1852 0 $0^{+} 2^{+}, (0^{-}, 1^{-}, 2^{-})$	$r_{\gamma/E_{\gamma}} = 1.74.$
6076 2 7	10 3	1923.2 7023.2	0,1 $0^{-}1^{-}$	$1032.9 \ 0 \ ,2^{\circ}, (0 \ ,1 \ ,2 \)$	$f = \frac{1}{12} = 0.04.$
6100.2 /	29 4 20 3	7923.2	$0^{-}1^{-}$	$10+0.9 \ 0 \ ,1 \ ,2$ 1822 8 $0+1+2+$	$I_{7/E_{7}} = 1.01.$ $I_{2}/E_{2}^{5} = 1.01$
6120.0.7	29 J 20 3	7923.2	$0^{-}1^{-}$	1022.0 0 , 1 , 2 1802 2 0 ⁺ 1 ⁺ 2 ⁺	$I_{2}/F_{2} = 1.01$.
6120.97	29 3 16 3	7923.2	$0^{-}1^{-}$	$1002.2 \ 0 \ ,1 \ ,2$ 1705 1 0 ⁺ 2 ⁺ (0 ⁻ 1 ⁻ 2 ⁻	1/12y = 1.00. 1) $1_2/12_2 = 0.53$
624636	27 3	7923.2	$0^{-}1^{-}$	1,75.1 + 0,2,(0,1,2) 1676 8 $0^+ 2^+ (1^+)$	$I_{\gamma}/F_{\gamma}^{5} = 0.83$
5210.50	215	, , , , , , , , , , , , , , , , , , , ,	· ,1	10,0.0 0 ,2 ,(1)	1/12/ 0.03.

$^{196}_{78}$ Pt $_{118}$ -4					From ENSDF	$^{196}_{78}\text{Pt}_{118}$ -4
6319.2 <i>6</i> 6520.8 <i>6</i>	33 <i>4</i> 34 <i>4</i>	7923.2 7923.2	0 ⁻ ,1 ⁻ 0 ⁻ ,1 ⁻	1603.9 $0^+, 2^+, (1^+)$ 1402.3 $0^+, 2^+, (1^+)$	$I\gamma/E\gamma^5 = 0.96.$ $I\gamma/E\gamma^5 = 0.85.$	

¹⁹⁵Pt(n, γ) E=2 keV: av res **1979Ci04** (continued)

$\gamma(^{196}\text{Pt})$ (continued)

E_{γ}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f J_f^{π}	Comments
6562.0 6	46 4	7923.2	$0^{-}, 1^{-}$	1361.1 0+,1+,2+	$I\gamma/E\gamma^5=1.12.$
6788.1 6	38 4	7923.2	$0^{-}, 1^{-}$	1135.0 0+,2+,(0-,1-,	(2^{-}) $I_{\gamma}/E_{\gamma}^{5}=0.77.$
7234.9 5	83 7	7923.2	$0^{-}, 1^{-}$	688.2 0+,1+,2+	$I\gamma/E\gamma^5=1.23.$
7567.8 5	83 7	7923.2	$0^{-}, 1^{-}$	355.3 0+,2+,(1+)	$I\gamma/E\gamma^5=0.97.$
7923.2 5	100	7923.2	$0^{-}, 1^{-}$	$0.0 \ 0^+, 2^+, (1^+)$	$I\gamma/E\gamma^5=0.94.$

[†] Relative intensity from 2 keV spectrum normalized to 100 for 7923-keV γ. Reduced intensities are given in arbitrary units.

 $^{196}_{78}{\rm Pt}_{118}$

 $^{196}_{78}{\rm Pt}_{118}$