Coulomb excitation 1990Ma37,1988Fe08

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Huang Xiaolong	NDS 108, 1093 (2007)	1-Jan-2006

The level scheme is from 1990Ma37. $E(^{208}Pb)=4.8-5.38 \text{ MeV/U}$, 97.5% enriched ¹⁹⁶Pt, measured E γ , I γ , particle- γ , and particle- γ - γ coincidences,Ge(Li), position-sensitive parallel plate avalanche counter.

Coincidence ratio of γ yields: 1990Ma37.

Excitation probabilities: 1992Da02, 1988Fe08.

Ion Implantation Perturbed Angular Correlation Technique(IMPAC), transient field: 1974Ga31 (¹⁶O), 1991St04 (⁵⁸Ni).

IMPAC, polarized hosts: 1981St13, 1981St24, 1992Br03 (⁵⁸Ni).

Reorientation effects: 1985Fe03 (¹⁶O,¹²C,⁴He).

 $\gamma(\theta,H,t), \gamma(\theta,H)$: 1982Le02 (³²S), 1974Ga31 (¹⁶O), 1981St17 (³²S,⁵⁸Ni).

 γ -particle(θ): 1986Bi13 (³²S).

(p,p'): E=4MeV (1955St57); E=4-5 MeV (1961Mc01); E=4.5 MeV (1971Mi08).

 (α, α') : E=14.2-15.8 MeV (1992Li14); E=14.1-15.6 MeV at 174.8°, E=16.8-18.6 MeV at 90° (1985Fe03,1986Gy04,1988Fe08); E=14-24 MeV (1976Ba35); E=15 MeV (1970Br26).

(⁷Li,⁷Li'): E=22, 22.5 MeV (1992Li14); (1989Li05).

(¹²C,¹²C'): E=42-46 MeV (1992Li14); E=41-56 MeV (1985Fe03,1988Fe08); E=41-45 MeV (1986Gy04); E=43 MeV (1989Li05).

(¹⁶O,¹⁶O'): E=36 MeV (1966Gr20); E=33 MeV (1967Ka16); E=41 MeV (1970Br26); E=42 MeV (1968Gl01, 1969Gl08); E=43.75 (1971Mi08); E=55-61 MeV (1985Fe03,1988Fe08); E=55-63 MeV (1986Gy04).

 $(^{20}\text{Ne}, ^{20}\text{Ne'}\gamma)$: E=90 MeV (1979Bo31).

(³²S,³²S'): E=77 MeV (1993Ta07); E=80-120 MeV (1981St17,1982Le02,1986Bi13).

 $({}^{37}\text{Cl}, {}^{37}\text{Cl}'\gamma)$: E=115 MeV (1991St04). Measured particle- γ coincidence, final transient field IMPAC.

 $({}^{40}Ca, {}^{40}Ca'\gamma)$: E=120 MeV (1979Ha06).

(⁵⁸Ni,⁵⁸Ni'γ): E=150 MeV (1993Ta07); E=214-226 MeV (1992Li14); E=180-210 MeV (1992Br03); E=160 MeV (1991St04); E=150 MeV (1986Ba19); E=220 MeV (1981Bo32,1981St24,1980Ke04,1979Bo31); E=80-130 MeV (1978SpZW). 97.5% enriched

¹⁹⁶Pt. Measured $\gamma(\theta,H)$, t, Recoil Distance Measurement(RDM), Doppler Shift Attenuation(DSA), (particle) γ -coin. IMPAC.

 $(^{63}Cu, ^{63}Cu'\gamma)$: E=180 MeV (1986Ba19). (particle)- γ coin.

 $(^{81}\text{Br}, ^{81}\text{Br'}\gamma)$: E=190 MeV (1979Ha06).

 $(^{136}Xe, ^{136}Xe'\gamma)$: E=620 MeV (1977Le15). (particle) γ -coin.

(²⁰⁸Pb,²⁰⁸Pb'γ): E=4.8-5.38 MeV/U (1990Ma37,1990MaZV).

¹⁹⁶Pt Levels

$E(\text{level})^{\dagger}$ $J^{\pi \ddagger}$ $T_{1/2}^{\#}$ Comments	
$\frac{11}{0.0^{@}} \frac{1}{0^{+}} \frac{11/2}{\text{stable}}$ $355.7^{@} 7 2^{+} 34.15 \text{ ps } 15 \text{ B(E2)}=1.372 6$ $\mu=+0.534 14$ $Q=+0.63 7$ $g=+0.267 7$ $T_{1/2}: \text{ from B(E2). Others: } 32.2 \text{ ps } 15 \text{ (RDM, 1981Bo32), } 35.4 \text{ ps } 35 \text{ (RDM, 1971NoZT}$ $21 \text{ (delayed coin., 1972Be53). For comparison, the evaluation of 1987Ra01 gives 33:}$ which is based on half-life as well as B(E2) measurements. B(E2) \uparrow : Weighted average of 1.382 6 (1985Fe03, 1986Gy04) and 1.368 4 (1992Li14). 1.42 6 (1984Mu19), 1.36 7 (1971Mi08), 1.35 4 (1970Br26), 1.49 5 (1969G108), 1.33 (1967Ka16), 1.34 16 (1966Gr20). These B(E2) values have been renormalized to B(E2,328)=1.649 15 of ¹⁹⁴ Pt from 1989Si01. The evaluation of 1987Ra01 gives B(40 based on half-life and B(E2) data. Others: 1976Ba35, 1968G101, 1967Mi15, 196 1955St57. $\mu:$ From weighted average of g factor. Other: 0.55 3 (1976Fu06). Q: Weighted average of +0.62 8 (1992Li14) and +0.66 12 based on Coulomb excitation reorientation (1986Gy04, 1989Ra17). Others: 0.51 18 or 0.58 18 (1969G108) dependent the + or - sign of interference; +0.56 18 (1978LeZA); +0.84 6 (quoted by 1981Bo)), 30.2 ps .5 ps 10 Others: 9 15 E2)=1.400 1Mc01, on ent upon 32); 0.82 6

Coulomb excitation 1990Ma37,1988Fe08 (continued)

¹⁹⁶Pt Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
			(quoted by 1985Fe03 from 1978SpZW); +0.78 6 (1981Bo32); +0.79 <i>12</i> (1985Fe03). g: weighted average of g=0.255 <i>11</i> (from g(¹⁹⁶ Pt)/g(¹⁹⁴ Pt)=R=1.007 <i>38</i> , 1992Br03, transient field), 0.266 <i>12</i> (R=1.05 <i>4</i> , 1986Ba19), 0.266 <i>21</i> (R=1.05 <i>8</i> , 1979Ha06), 0.268 <i>28</i> (R=1.06 <i>11</i> 1972Sp03) [1992Br03, 1986Ba19, 1979Ha06 and 1972Sp03 scaled by evaluators to g(¹⁹⁴ Pt,328)=0.253 6], 0.294 <i>23</i> (1991St04, IMPAC), 0.296 <i>46</i> (1974Ga31, IMPAC), 0.292 <i>28</i> (1972Be53), and 0.284 <i>47</i> (1968Be61). Lifetime-dependent results of 1974Ga31, 1972Be53 and 1968Be61 have been corrected for present adopted $T_{1/2}$. Others: g=0.213 <i>21</i> (1982Le02); 0.346 <i>13</i> (1981Ka23, IPAC); 0.265 <i>35</i> (1968Mu02); 0.27 <i>4</i> (1967Ka16). Value given by 1982Le02 is much lower as compared to other values from Coulomb excitation and from IPAC, see 1983St01 for a possible explanation of this low value.
688.7 ^{&} 8	2+	33.8 ps 7	 B(E2)[†]=0.368 9 g=0.245 50 Q=-0.39 16 (1992Li14) T_{1/2}: weighted average of 35.1 ps 30 (RDM,1981Bo32), 36 ps 3 (ce-γ(t),1972Be53), and 33.6 ps 8 from B(E2)=0.368 9 (assuming E0 fraction of 333γ is negligible). B(E2)[†]: Weighted average of B(E2)(2+(356) to 2+(689))=0.370 5 (1992Li14), 0.242 +52-50 (1990Ma37 scaled by evaluators to B(E2)(0⁺ to 2⁺)=1.382 6), and 0.342 34 (1972Be53). g: From IMPAC, g(2⁺,355)/g(2⁺,688)=1.09 22 (1981St24).
876.6 [@] 9	4+	3.55 ps 5	 B(E2)↑=0.730 10 B(E4)↑=0.012 8 (1992Li14) g=0.277 26 Q=+1.03 12 (1992Li14) T_{1/2}: weighted average of 3.5 ps 3 (RDM,1981Bo32) and 3.55 ps 5 from B(E2). B(E2)↑: Weighted average of B(E2)(2⁺ to 4⁺)=0.67 11 (1971Mi08), 0.734 +52-34 (1990Ma37 scaled by evaluators to B(E2)(0⁺ to 2⁺)=1.382 6), and 0.73 1 (1992Li14). B(E2)↑: M(E2 to 355)=1.83 15 COUL.EX (1971Mi08, quoted by 1988Fe08), 1.90 8 recoil distance (1981Bo32 quoted by 1988Fe08), 1.94 2 (quoted by 1988Fe08), 1.90 8 recoil distance (1981Bo32 quoted by 1988Fe08), 1.94 2 (quoted by 1986Gy04), 2.07 7 (1988Fe08). Others: B(E4)=0.0070 (1976Ba35), E4 matrix element M(E4)=-0.155 16 (e,e') (quoted by 1988Fe08 from 1985Bo14), -0.203 (quoted by 1988Fe08 from 1981De12), -0.084 (quoted by 1988Fe08 from 1976Ba35), M(E4 to 0)=0.18 7 (quoted by 1986Gy04), -0.11 11 (1988Fe08). -0.19 7 if M(E2 to 688)=0 or 0.5 (1988Fe08). g: Weighted average of 0.296 33 (from g/g(2⁺, 194 Pt)=1.169 129, 1992Br03 scaled by evaluators to g(¹⁹⁴Pt,328)=0.253 6) and 0.245 43 from IMPAC, g(2⁺,356)/g(4⁺,876)=1.09 19 (1981St24). Q: Others: +2.5 11 if M(E2,4⁺,(877) to 2⁺,(356))=1.88 6 and M(E2,4⁺,(877) to 2⁺,(689))=0, (1988Fe08); or Q=2.3 11 (if M(E2,4⁺,(877) to 2⁺,(356)))=1.88 6 and M(E2)(4⁺,(877) to 2⁺,(689))=0.5 (1988Fe08).
1015.1 ^{&} 10 1135.3 ^a 9	3 ⁺ 0 ⁺	4.2 ps +17-6	B(E2) [†] =0.0058 +7-9 B(E2) [†] =0.02 20 (1992Li14) T _{1/2} : from B(E2) and branching of 779γ. Other: 6 ps 3 (composite RDM, 1980Ke04). B(E2) [†] : Weighted average of B(E2) 2+(356) to 0+(1135)=0.0056 10 (1992Li14) and 0.0061 +9-17 (1990Ma37 scaled by evaluators to B(E2)(0 ⁺ to 2 ⁺)=1.382 6). 0.0044 20 (1979Bo31,1981Bo32) and 0.0045 9 (from M(E2 to 356)=0.15 3 (1986Gy04)). B(E2) [†] : From 2+(689) to 0+(1135).
1270.6 ^{<i>c</i>} 14 1293.3 ^{&} 9	5- 4 ⁺	2.6 ps +7-4	B(E2) \uparrow =0.0038 +9-17 B(E2) \uparrow =0.362 +40-110 T _{1/2} : weighted average of 2.9 ps 6 (RDM 1981Bo32) and T _{1/2} =2.4 ps +11-3 from B(E2). B(E2) \uparrow : From 2+(356) to 4+(1293). 1990Ma37 scaled by evaluators to B(E2)(0 ⁺ to

Continued on next page (footnotes at end of table)

¹⁹⁶₇₈Pt₁₁₈-3

Coulomb excitation 1990Ma37,1988Fe08 (continued)

¹⁹⁶Pt Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
			2 ⁺)=1.382 <i>6</i> . Other: 0.002 <i>4</i> (1992Li14). and 0.0054 <i>18</i> (1979Bo31,1981Bo32). Others: M(E2,4 ⁺ to 2+(356))=0.164 <i>27</i> (quoted by 1986Gy04). B(E2)↑: From 2+(689) to 4+(1293). 1990Ma37 scaled by evaluators to B(E2)(0 ⁺ to
			2 ⁺)=1.382 6. Other: 0.33 3 (1992Li14). Others: M(E2,4 ⁺ to 689)=1.26 <i>13</i> (quoted by 1986Gy04). B(E2)=0.200 56. B(E2)↑: weighted average of B(E2)(4+(1293) to 4+(877))=0.201 +73-26 (1990Ma37)
			scaled by evaluators to $B(E2)(0^+$ to $2^+)=1.382$ 6), 0. 193 97 (1979Bo31,1981Bo32), and 0.084 14 (1992Li14 877 to 1293).
1361.7 ^{<i>a</i>} 10	2+		B(E2)↑=0.0008 +7-3 T _{1/2} : from B(E2) and adopted γ-ray properties. B(E2)↑: From 2+(356) to 2+(1362). 1990Ma37 scaled by evaluators to B(E2)(0+(0) to 2+(356))=1.382 6.
1374.5 ^c 12	7-		
1446.8 10	3-	0.62 ns 17	B(E3)↑=0.103 <i>4</i> E(level): from 1989Li05.
0			T _{1/2} : from B(E3) and adopted γ-ray properties. B(E3) [↑] : Weighted average of B(E3)(0+(0) to 3-(1447))=0.103 <i>18</i> (1988Bo08), 0.116 <i>14</i> (1992Po09) (¹⁹⁶ Pt(e,e')), 0.099 <i>10</i> (¹⁹⁶ Pt(p,p'), 1988Co16), and 0.102 <i>4</i> (1989Li05).
1525.8 [@] 10	6+	0.98 ps +11-5	B(E2)↑=0.658 +29-69 Q=-0.18 26 (1992Li14)
			$T_{1/2}$: weighted average of 1.0 ps 3 (RDM, 1981Bo32) and 0.98 ps +12-5 from B(E2). B(E2) \uparrow : From 4+(877) to 6+(1526). 1990Ma37 scaled by evaluators to B(E2)(0+(0) to 2+(356))=1.382 6. Other:0.64 4 (1992Li14).
1535.8 <mark>b</mark> 10	4+		
1609.1 ^{&} 15 1820.6 ^c 12	(5 ⁺) 9 ⁻		
2007.4 ^{&} 10	6+	0.77 ps 19	$B(E2)\uparrow=0.47 + 16 - 11 (1990Ma37)$ $B(E2)\uparrow=0.0049 + 23 - 20 (1990Ma37)$
			T _{1/2} : from weighted average of computed T _{1/2} from B(E2) and adopted γ -ray properties. B(E2) \uparrow : From 4+(1293) to 6+(2007). 1990Ma37 scaled by evaluators to B(E2)(0+(0) to 2+(356))=1.382 6.
			$B(E2)\uparrow$: From 4+(877) to 6+(2007). 1990Ma37 scaled by evaluators to $B(E2)(0+(0))$ to 2+(356))=1.382 6. $B(E2)=0.078 + 151-72$ (1990Ma37).
Ø			B(E2) \uparrow : from 6+(1526) to 6+(2007), calculated with the assumption δ (E2/M1)=-2.6. 1990Ma37 scaled by evaluator to B(E2)(0+(0) to 2+(356))=1.383 <i>6</i> .
2252.9 [@] 11	8+	0.42 ps +4-5	B(E2)↑=0.696 +66-74 (1990Ma37) T _{1/2} : computed from B(E2) and adopted γ-ray properties. B(E2)↑: From 6+(1526) to 8+(2253). 1990Ma37 scaled by evaluators to B(E2)(0+(0) to 2+(356))=1.382 6.
2749.8 ^{&} 11	(7-,8+)	0.46 ps +8-6	B(E2) \uparrow =0.452 +72-60 (1990Ma37) T _{1/2} : computed from B(E2) and adopted γ -ray properties. B(E2) \uparrow : From 6+(2007) to 8+(2750). 1990Ma37 scaled by evaluators to B(E2)(0+(0) to 2+(356))=1.382 6.
3044.2 [@] 13	(10 ⁺)		

[†] From least-squares fit to $E\gamma's$.

[‡] From Adopted Levels.

[#] Value recommended by 1981Bo32 based on their RDM, composite RDM and DSA measurements. These data presumably supersede the authors' earlier results: 1979Bo31, 1980Ke04.
[@] Band(A): ground-state rotational band.

Coulomb excitation 1990Ma37,1988Fe08 (continued)

¹⁹⁶Pt Levels (continued)

[&] Band(B): γ -vibrational band. ^{*a*} Band(C): band based on the 0+(2) state, related either to a β -vibration or to a K=0 two-phonon γ -vibration. ^{*b*} Band(D): related to K=4 two-phonon γ -vibration.

^c Band(E): negative-parity states.

					$\gamma(^{196}\text{Pt})$			
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [#]	δ	α^{a}	Comments
327 1	0.84 18	1015.1	3+	688.7 2+	E2		0.0765 13	α (K)=0.0494 8; α (L)=0.0206 4; α (M)=0.00513 10; α (N+)=0.00147 3 E _y : superimposed by the transition of ¹⁹⁴ Pt.
333.3 7	21.1 3	688.7	2+	355.7 2+	E0+M1+E2	-5.2 5	0.0780 17	$\alpha(K)=0.0522 \ 14; \ \alpha(L)=0.0196 \ 4; \ \alpha(M)=0.00486 \ 8; \ \alpha(N+)=0.001394 \ 23$
355.7 7	100	355.7	2+	0.0 0+	E2		0.0603	$\alpha(K)=0.0402 \ 6; \ \alpha(L)=0.01519$ 24; $\alpha(M)=0.00377 \ 6;$ $\alpha(N+)=0.001081 \ 17$
394 1	1.1 4	1270.6	5-	876.6 4+	E1		0.01391 <i>21</i>	α(K)=0.01155 I8; α(L)=0.00182 3; α(M)=0.000417 7; α(N+)=0.0001216 I9 I _γ : from detectorGe(Li) R, Pt-event.
^x 406 <i>I</i> 416.7 ^{&} 7	0.22 <i>12</i> 1.18 <i>13</i>	1293.3	4+	876.6 4+				if M=E2 α =0.0396\$ α (K)= 0.0278\$ α (L)=0.0089\$ α (M)= 0.00219\$ α (N+)=0.00067. Mult.: from recommended upper limits for γ -ray strengths. δ : extrapolated using a theoretical model of GREINER (1966GrZX). 1966GrZX). 1966GrZX). 1966GrZX: W.GREINER nucl. PHYS.80,417 (1966). I $_{\gamma}$: 417 γ :604 γ :938g=13:75:12 (1081Bc22)
^x 425 1	0.59 15							(1981B032).
432 ^{@b} 1 432 ^{@b} 1	0.43 ^b 15 0.43 ^b 15	1446.8 2252.9	3 ⁻ 8 ⁺	1015.1 3 ⁺ 1820.6 9 ⁻	[E1]		0.01133 17	α (K)=0.00943 <i>14</i> ; α (L)=0.001471 22; α (M)=0.000337 5; α (N+)=9.85×10 ⁻⁵ <i>15</i>
446.4 ^{b&} 7	1.87 ^b 19	1135.3	0+	688.7 2+	E2		0.0329	$ \begin{aligned} &\alpha(\mathrm{K}) = 0.0236 \ 4; \ \alpha(\mathrm{L}) = 0.00705 \\ &11; \ \alpha(\mathrm{M}) = 0.00173 \ 3; \\ &\alpha(\mathrm{N}+) = 0.000497 \ 8 \\ &\mathrm{I}_{\gamma}: \ \mathrm{Br}(446\gamma)/\mathrm{Br}(780\gamma) = 28/72 \\ &(1981\mathrm{Bo}32). \end{aligned} $
446.4 ^{&b} 7	1.87 ^b 19	1820.6	9-	1374.5 7-	E2		0.0329	α (K)=0.0236 4; α (L)=0.00705 11; α (M)=0.00173 3; α (N+)=0.000497 8
481.4 [@] 7	0.46 9	2007.4	6+	1525.8 6+	[E2,M1]		0.06 3	$\alpha(K)=0.05 3; \alpha(L)=0.009 4;$

Continued on next page (footnotes at end of table)

Coulomb excitation 1990Ma37,1988Fe08 (continued)

γ ⁽¹⁹⁶Pt) (continued) Mult.# E_{γ}^{\dagger} I_{γ}^{\ddagger} α^{a} E_i(level) J_i^{π} \mathbf{E}_{f} \mathbf{J}_{f}^{π} Comments α(M)=0.0021 7; α(N+..)=0.00064 22 Superimposed by the transition of ¹⁹⁴Pt. 497[@] 1 0.24 8 2749.8 $(7^{-}, 8^{+})$ 2252.9 8+ 521.0^b 7 54.3^b 4 4^{+} 355.7 2+ 876.6 E2 0.0224 $\alpha(K)=0.01668\ 24;\ \alpha(L)=0.00436\ 7;$ $\alpha(M)=0.001056\ 16;\ \alpha(N+..)=0.000305\ 5$ Assignment according to 1984Sc19, $I\gamma(4+(1))$ to 2^+)<1%. 521.0^b 7 54.3^b 4 1535.8 4^{+} 1015.1 3+ [M1,E2] 0.046 24 $\alpha(K)=0.037\ 21;\ \alpha(L)=0.0068\ 25;$ $\alpha(M)=0.0016$ 6; $\alpha(N+..)=0.00047$ 17 Assignment according to 1984Sc19, $I\gamma(4+(1))$ to 2^+)<1%. x567 1 0.32 14 594 1 0.42 9 1609.1 (5^{+}) 1015.1 3+ [E2] 0.01647 $\alpha(K)=0.01257 \ 19; \ \alpha(L)=0.00298 \ 5;$ α (M)=0.000715 *11*; α (N+..)=0.000207 *3* E_{γ} : also observed in coincidence (1984Sc19). 1293.3 4^{+} 688.7 2+ $\alpha(K)=0.01212$ 18; $\alpha(L)=0.00283$ 4; 604.4 7 14.36 20 [E2] 0.01583 α(M)=0.000680 10; α(N+..)=0.000197 3 649.3 7 22.5 3 1525.8 6^{+} 876.6 4+ [E2] 0.01348 $\alpha(K)=0.01043 \ 15; \ \alpha(L)=0.00233 \ 4;$ α(M)=0.000556 8; α(N+..)=0.0001614 24 673[&] 1 0.20 10 2^{+} 688.7 2+ $\alpha(K)=0.020 \ 10; \ \alpha(L)=0.0034 \ 14;$ 1361.7 (M1+E2) 0.024 12 $\alpha(M)=0.0008 \ 3; \ \alpha(N+..)=0.00023 \ 9$ 714.07 5.01 15 2007.4 6^{+} 1293.3 4+ E2 0.01095 $\alpha(K)=0.00859 \ 13; \ \alpha(L)=0.00181 \ 3;$ $\alpha(M)=0.000430$ 7; $\alpha(N+..)=0.0001250$ 18 727.4 7 5.30 14 2252.9 8^{+} 1525.8 6+ [E2] 0.01052 $\alpha(K)=0.00827$ 12; $\alpha(L)=0.001723$ 25; α(M)=0.000409 6; α(N+..)=0.0001190 17 742.1 @ 7 0.92 10 2749.8 $(7^{-}, 8^{+})$ 2007.4 6+ x753 1 0.11 9 759[@] 1 0.12 7 1446.8 3-688.7 2+ E1 0.00355 $\alpha(K)=0.00297$ 5; $\alpha(L)=0.000445$ 7; $\alpha(M)=0.0001015 \ 15; \ \alpha(N+..)=2.97\times 10^{-5} \ 5$ x769 1 0.12 6 779.7 & 7 0.75 9 0^+ 355.7 2+ $\alpha(K)=0.00719 \ 11; \ \alpha(L)=0.001444 \ 21;$ 1135.3 E2 0.00908 $\alpha(M)=0.000342$ 5; $\alpha(N+..)=9.95\times10^{-5}$ 15 791.3 7 0.20 6 2252.9 8+ *α*(K)=0.00699 *10*; *α*(L)=0.001392 *20*; 3044.2 (10^{+}) [E2] 0.00880 $\alpha(M)=0.000329$ 5; $\alpha(N+..)=9.59\times10^{-5}$ 14 ^x811 1 0.10 5 847[@] 1 0.10 4 4^+ 688.7 2+ 0.00765 $\alpha(K)=0.00611$ 9; $\alpha(L)=0.001178$ 17; 1535.8 [E2] α (M)=0.000278 4; α (N+..)=8.10×10⁻⁵ 12 878[@] 1 $\alpha(K)=0.00226 4; \alpha(L)=0.000335 5;$ 0.30 6 2252.9 8^{+} 1374.5 7-[E1] 0.00269 $\alpha(M) = 7.63 \times 10^{-5}$ 11: $\alpha(N+...) = 2.24 \times 10^{-5}$ 4 x894 1 0.10 4 ^x901 1 0.57 7 930[@] 1 0.18 5 2749.8 $(7^{-}, 8^{+})$ 1820.6 9-937.7[&] 7 0.97 7 4^{+} 355.7 2+ 1293.3 E2 0.00622 $\alpha(K)=0.00501$ 7; $\alpha(L)=0.000926$ 13; $\alpha(M)=0.000217$ 3; $\alpha(N+...)=6.34\times10^{-5}$ 9 ^x958 1 0.20 6 0.55 7 2^{+} 1006.0 7 1361.7 355.7 2+ x1046 1 0.13 5 $1090^{\textcircled{0}}$ 1 0.14 4 355.7 2+ E1 0.00181 $\alpha(K)=0.001525\ 22;\ \alpha(L)=0.000223\ 4;$ 1446.8 3- $\alpha(M) = 5.07 \times 10^{-5} 8$; $\alpha(N+..) = 1.489 \times 10^{-5} 21$ ^x1104 1 0.10 5 1130.7 & 7 0.49 6 6^{+} 876.6 4+ E2 0.00431 2007.4 $\alpha(K)=0.00352$ 5; $\alpha(L)=0.000608$ 9; α (M)=0.0001414 20; α (N+..)=4.20×10⁻⁵ 6

Continued on next page (footnotes at end of table)

Coulomb excitation 1990Ma37,1988Fe08 (continued)

$\gamma(^{196}\text{Pt})$	(continued)
$y(\mathbf{I}\mathbf{I})$	(continueu)

E_{γ}^{\dagger}	I_{γ} ‡	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{a}	Comments
^x 1157 <i>1</i> ^x 1170 <i>1</i>	0.18 5 0.12 5							
1180 [@] 1	0.12 5	1535.8	4+	355.7	2+	[E2]	0.00397	α (K)=0.00325 5; α (L)=0.000554 8; α (M)=0.0001288 19: α (N+)=4.04×10 ⁻⁵ 6
^x 1248 1	0.15 5							
^x 1311 <i>I</i>	0.14 4							
^x 1322 1	0.13 4							
1375 [@] 1	0.10 5	2749.8	$(7^{-}, 8^{+})$	1374.5	7-			
^x 1383 1	0.15 4		()-)					
^x 1440 1	0.39 5							
^x 1469 1	0.21 4							
^x 1488 1	0.21 4							
^x 1542 1	0.16 4							

 † From 1990Ma37. ΔE have been assigned by evaluators.

[‡] Relative γ -yields for the angle-integrated spectrum of Ge(Li), the intensity has been normalized to 356 γ as 100 (1990Ma37).

From adopted gammas.@ Placement based on level energies.

[&] Assignment according to 1979Ci04.

^a Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^b Multiply placed with undivided intensity.

 $x \gamma$ ray not placed in level scheme.

7

Coulomb excitation 1990Ma37,1988Fe08

¹⁹⁶₇₈Pt₁₁₈