¹⁹⁶Ir β^- decay (52 s) 1977Ha32,1968Ja06,1967Mo10

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Huang Xiaolong	NDS 108, 1093 (2007)	1-Jan-2006				

Parent: ¹⁹⁶Ir: E=0.0; $J^{\pi}=(0^{-})$; $T_{1/2}=52 \text{ s } 2$; $Q(\beta^{-})=3209 \ 38$; $\%\beta^{-}$ decay=100.0 1977Ha32: source in secular equilibrium with its ¹⁹⁶Os parent. 1968Ja06: source: ¹⁹⁶Pt(n,p); no chem; γ , ce; semi, coin, $\gamma\gamma(\theta)$. 1967Mo10, 1966Vo05: enriched target, no chem; γ , ce; cryst, semi, coin. Others: 1954Bu02, 1954Bu83, 1965Bi04, 1967JaZZ.

¹⁹⁶Pt Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\ddagger}$	Comments
0.0	0^{+}	stable	
355.65 19	2^{+}		
689.20 24	2+		
1135.61 25	0^{+}		J^{π} : supported by angular correlation; low intensity of 1135 γ (1968Ja06).
1402.6 3	0^{+}		J^{π} : supported by log <i>ft</i> .
1824.1 <i>3</i>	0^{+}		J^{π} : supported by log <i>ft</i> .
1918.83 25	0^+		J^{π} : supported by log <i>ft</i> .

[†] From least-squares fit to $E\gamma$'s.

[‡] From the Adopted Levels. Contributing arguments from this data set are given as comments.

β^{-} radiations

 β feeding determined from a detailed intensity balance at each level, except as noted.

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
$(1.29 \times 10^3 4)$	1918.83	1.1 4	6.09 17	av E β =445 16
$(1.38 \times 10^3 4)$	1824.1	1.0 4	6.24 18	av E β =484 16
$(1.81 \times 10^3 4)$	1402.6	1.3 4	6.56 14	av E β =658 16
$2.1 \times 10^3 2$	1135.61	15 <i>3</i>	5.73 10	av Eβ=771 17
				E(decay): $E\beta = 2100$, $I\beta = 15\%$ from 1967Mo10; $\Delta E, \Delta I\beta$ estimated by evaluators.
$(2.52 \times 10^3 4)$	689.20	< 0.2	>9.2 ¹ <i>u</i>	av E β =937 16
$(2.85 \times 10^3 4)$	355.65	1.0 7	8.8^{1u} 3	av E β =1079 <i>17</i>
3210 40	0.0	80 4	5.75 4	av E β =1265 17
				E(decay): weighted avg: 3190 60 (1966Vo05, energy standard corrected by evaluators), 3250 60 (1967Mo10, ΔE not given by 1967Mo10 but estimated by evaluators).
				$I\beta$: weighted av: 85.6 (1967Mo10, $\Delta I\beta$ assigned by evaluators), 77.5 (1966Vo05).

[†] Absolute intensity per 100 decays.

$\gamma(^{196}\text{Pt})$

I γ normalization: Normalized to 80% 4 b- decay to g.s. (1966Vo05,1967Mo10,1968Ja06).

¹⁹⁶ Ir β^- decay (52 s)	1977Ha32,1968Ja06,1967Mo10 (continued)
--	--

γ ⁽¹⁹⁶ Pt) (continued)								
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	J_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α &	Comments
332.9 2	21.4 12	689.20	2+	355.65	2+	E0+M1+E2	0.15 8	α (K)=0.12 8; α (L)=0.025 6; α (M)=0.0060 12; α (N+)=0.0017 4 α (L): From α (K)exp and K/L/MNO, E2 theory. Mult.: see ¹⁹⁶ Au ε decay.
355.7 2	100	355.65	2+	0.0	0+	E2	0.0603	$\alpha(K)=0.0402 \ 6; \ \alpha(L)=0.01519 \ 22; \ \alpha(M)=0.00377 \ 6; \ \alpha(N+)=0.001081 \ 16$ Mult.: see ¹⁹⁶ Au ε decay.
446.8 2	21.6 8	1135.61	0+	689.20	2+	E2	0.0328	$\alpha(K)=0.0235 4; \alpha(L)=0.00703 10; \alpha(M)=0.001721$ 25; $\alpha(N+)=0.000496 7$ I_{γ} : From I(γ +ce)/(1+ α) and required for intensity balance at 689 and 1136 level. Measured I γ : 31.8 12 (1977Ha32)
779.6 2	60.7 <i>23</i>	1135.61	0^{+}	355.65	2+	E2	0.00908	$\alpha(K)=0.00720 \ 10; \ \alpha(L)=0.001445 \ 21; \ \alpha(M)=0.000342 \ 5; \ \alpha(N+)=9.96\times10^{-5} \ 14$
(*1006) 1047.0 2	<2 5.8 6	1402.6	0^+	355.65	2+	(E2)	0.00500	α (K)=0.00406 6; α (L)=0.000720 10; α (M)=0.0001681 24; α (N+)=4.92×10 ⁻⁵ 7
(1135)	<1 [‡]	1135.61	0^{+}	0.0	0^{+}	E0		
1228.6 2	1.9 9	1918.83	0^{+}	689.20	2+	[E2]	0.00368	α (K)=0.00301 5; α (L)=0.000508 8; α (M)=0.0001179 17; α (N+)=4.16×10 ⁻⁵ 6
(1402)	<2.5 [‡]	1402.6	0^{+}	0.0	0^{+}	E0		
1468.4 2	5.0 14	1824.1	0^+	355.65	2+	[E2]	0.00268	α (K)=0.00217 3; α (L)=0.000351 5; α (M)=8.10×10 ⁻⁵ 12; α (N+)=8.03×10 ⁻⁵ 12
1564.2 2	4.0 8	1918.83	0^+	355.65	2+	[E2]	0.00242	α (K)=0.00193 3; α (L)=0.000309 5; α (M)=7.12×10 ⁻⁵ 10; α (N+)=0.0001084 16
(1824)	<1.5 [‡]	1824.1	0^+	0.0	0^+	E0		

[†] From 1977Ha32.
[‡] Unobserved in spectrum, limit placed on Iγ.
[#] From adopted gammas.
[@] For absolute intensity per 100 decays, multiply by 0.18 4.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*x*} γ ray not placed in level scheme.

¹⁹⁶Ir β^- decay (52 s) 1977Ha32,1968Ja06,1967Mo10

Decay Scheme

