|                                            | Туре                     | Author                      | Citation                    | Literature Cutoff Date                |  |
|--------------------------------------------|--------------------------|-----------------------------|-----------------------------|---------------------------------------|--|
|                                            | Full Evaluation          | Huang Xiaolong              | NDS 108, 1093 (2007)        | 1-Jan-2006                            |  |
| $Q(\beta^{-}) = -1507 \ 3; \ S(n) = 7921.$ | .93 <i>13</i> ; S(p)=824 | 1.5 21; $Q(\alpha)=812$ 3   | 2012Wa38                    |                                       |  |
| Note: Current evaluation has               | s used the followi       | ng Q record.                |                             |                                       |  |
| $Q(\beta^{-}) = -1507 \ 3; \ S(n) = 7921.$ | .92 13; S(p)=8240        | 5.6 17; $Q(\alpha) = 808.1$ | 26 2003Au03                 |                                       |  |
| Other reactions: <sup>197</sup> Au(p,2p)   | : 1990Co31.              |                             |                             |                                       |  |
| $^{196}$ Pt(n,xnyp $\gamma$ ) (2001Ta31):  | E(n)=1-250 MeV           | White spectrum sp           | allation neutron source; pr | rompt $\gamma$ -rays measured with    |  |
| Compton-suppressed HP                      | Ge detectors.            |                             |                             |                                       |  |
| Photonuclear reactions: 1987               | 7Da29.                   |                             |                             |                                       |  |
| Hyperfine structure and isoto              | ope-shift measure        | ments: 1992Hi07, 1          | 990Hi08, 1988Bo31, 1988     | BLe22, 1987Ne09.                      |  |
| Cross section and yield measured           | surements: 1991S         | e04, 1990HoZV, 19           | 88Bo08, 1988Co16, 1988      | Co19.                                 |  |
| Nuclear structure calculation              | s: 1993Fe07, 199         | 3Wo06, 1993Za05,            | 1992Da02, 1992Ba59, 19      | 92La05, 1992Sh18, 1991Ku17, 1991Li08, |  |
| 1991Na14, 1990Ha27, 1                      | 990Lo06, 1990M           | a47, 1990Mu18, 19           | 90Na19, 1990Su08, 1989E     | Bo24, 1989Gu01, 1989Ia01, 1988Ba47,   |  |
| 1988Bh04, 1988Bh07, 1                      | 988Ca15, 1988Ga          | a23, 1988Hi07, 1988         | 3Sa37, 1988Va19, 1988Zg     | 01, 1997De21, 1997De28, 1997Ha33.     |  |
|                                            |                          |                             | <sup>196</sup> Pt Levels    |                                       |  |

There are additional tentative higher-energy levels reported in  $(n,\gamma)$  E=thermal.

#### Cross Reference (XREF) Flags

|                          |                  | <ul> <li>A 196 Ir</li> <li>B 196 Ir</li> <li>C 196 Au</li> <li>D 194 Pt</li> <li>E 195 Pt</li> <li>F 195 Pt</li> <li>G 195 Pt</li> </ul> | $\beta^-$ decay (52 s)<br>$\beta^-$ decay (1.40 h)<br>$\mu \varepsilon$ decay (6.1669 d)<br>(t,p)<br>(n, $\gamma$ ) E=thermal<br>(n, $\gamma$ ) E=11.9 eV<br>(n, $\gamma$ ) E=19.6 eV | H<br>J<br>K<br>L<br>M | <sup>195</sup> Pt(n, $\gamma$ ) E=2 keV: av res<br><sup>195</sup> Pt(d,p)<br><sup>196</sup> Pt(e,e')<br><sup>196</sup> Pt(n,n' $\gamma$ )<br><sup>196</sup> Pt(d,pn $\gamma$ )<br><sup>196</sup> Pt(d,pn $\gamma$ )<br><sup>196</sup> Pt(p,p'),(pol p,p'),(d,d')<br>Coulomb excitation                                                                                                                                                                                                                                             | O<br>P<br>Q<br>R<br>S                                                                                                         | <sup>197</sup> Au( $\mu^{-},n\gamma$ )<br><sup>197</sup> Au(d, <sup>3</sup> He)<br><sup>198</sup> Pt(p,t)<br><sup>196</sup> Pt( $\gamma,\gamma'$ )<br><sup>196</sup> Pt( $p,p'\gamma$ )                                                                                                                                                                                                                   |  |  |
|--------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| E(level) <sup>†</sup>    | J <sup>π</sup> a | T <sub>1/2</sub>                                                                                                                         | XREF                                                                                                                                                                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Con                                                                                                                           | nments                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 0.0 <sup>‡</sup>         | 0+               | stable                                                                                                                                   | ABCDEFGHIJKLMNO                                                                                                                                                                       | PQ S                  | J <sup><math>\pi</math></sup> : absence of hyperfine splitting (1935Fu06) consistent with J=0.<br>$\Lambda < r^2 > (^{194}\text{Pt}.^{196}\text{Pt}) = 0.926 \text{ fm}^2 4 (1987\text{Ne09}).$                                                                                                                                                                                                                                                                                                                                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 355.6841 <sup>‡</sup> 20 | 2+               | 34.15 ps <i>15</i>                                                                                                                       | ABCDEFGHI JKLMNO                                                                                                                                                                      | PQ S                  | J <sup>π</sup> : from E2 γ to 0 <sup>+</sup> level.<br>T <sub>1/2</sub> : from B(E2)=1.372 6.<br>30.2 ps 21 (delayed coin,<br>(1981Bo32) (value recom<br>RDM, composite RDM, a<br>B(E2)↑: Weighted average of<br>(1985Fe03, 1986Gy04). C<br>$\mu$ : +0.588 46 (1991St04), +<br>2005St24.<br>$\mu$ : Others: +0.534 14 from<br>measurements, see Coulor<br>Q: +0.62 8 (1992Li14). Con<br>MOME2 Others: +0.63 7 (to<br>or 0.58 18 (1969Gl08) de<br>interference; +0.56 18 (19<br>1981Bo32); 0.82 6 (quote<br>+0.78 6 (1981Bo32); +0. | Other<br>1972<br>mendo<br>of 1.30<br>Others<br>0.604<br>weigh<br>mb ex<br>mpilat<br>based<br>pende<br>978Le<br>ed by<br>79 12 | s: 35.4 ps 35 (RDM,1971NoZT),<br>Be53), and 32.2 ps 15<br>ed by 1981Bo32 based on their<br>SA measurements).<br>58 4 (1992Li14) and 1.382 6<br>: see Coulomb excitation.<br>48 (1993Ta07). Compilation:<br>ted average of g-factor<br>citation.<br>ion: 2005St24.<br>on Coulomb excitation), 0.51 18<br>ent upon the + or – sign of<br>ZA); +0.84 6 (quoted by<br>1985Fe03 from 1978SpZW);<br>(1985Fe03). |  |  |

 $688.693^{\#} 5$  2<sup>+</sup> 33.8 ps 7 A CDEFGHI KLMNOPQ S  $J^{\pi}$ : L=2 in <sup>198</sup>Pt(p,t).

 $T_{1/2}$ : weighted average of 35.1 ps 29 (value recommended by

# <sup>196</sup>Pt Levels (continued)

| E(level) <sup>†</sup>       | J <sup>π</sup> a                  | T <sub>1/2</sub> | XREF              | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------|-----------------------------------|------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 876 865 <sup>‡</sup> 5      | <b>4</b> <sup>+</sup>             | 3.55 ps 5        | BCDEF TIKIMNOPO S | 1981Bo32 based on their RDM, composite RDM, and DSA<br>measurements), 36 ps 3 (ce- $\gamma$ (t),1972Be53), and 33.6 ps 8<br>from B(E2)=0.368 9 (see Coulomb excitation, assuming E0<br>fraction of 333 $\gamma$ is negligible).<br>$\mu$ =+0.54 9 (1992Br03). Compilation: 2005St24.<br>$\mu$ : Others: 0.49 10 from g/g(356 level)=0.92 19 (1981St24), see<br>Coulomb excitation.<br>Q=-0.39 16 (1992Li14). Compilation: 2005St24.<br>B(E4)1=0.0186 21                                                                                                                                                                                                                       |
| 010.005                     |                                   | 5.55 ps 5        |                   | J <sup><i>n</i></sup> : L=4 in (p,t).<br>$J^{n}$ : L=4 in (p,t).<br>$T_{1/2}$ : weighted average of 3.5 ps <i>3</i> (value recommended by<br>1981Bo32 based on their RDM, composite RDM, and DSA<br>measurements), and 3.55 ps <i>5</i> from B(E2) (weighted average<br>of 1971Mi08, 1990Ma37, and 1992Li14. See Coulomb<br>excitation).<br>B(E4)↑: From <sup>196</sup> Pt(e,e'). Other: B(E4)=0.0308 23 from (pol<br>p,p'). B(E4)=0.012 8 (1992Li14) from Coulomb excitation.<br>$\mu$ =+1.38 <i>16</i> (1992Br03). Compilation: 2005St24.<br>$\mu$ : Others: 1.11 <i>10</i> from g=0.277 26, see Coulomb excitation.<br>O=1.03 <i>12</i> (1992Li14). Compilation: 2005St24. |
| 1015.044 <sup>#</sup> 5     | 3+                                |                  | C EF I KLMN P S   | $J^{\pi}$ : E2 $\gamma$ to 2 <sup>+</sup> , $\gamma$ -band member, nonpopulation of this level<br>in <sup>196</sup> Pt(n, $\gamma$ ) E=2 keV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1135.312 <sup>@</sup> 5     | 0+                                | 4.2 ps +17-6     | A DEFGHI N PQ     | $J^{\pi}$ : L=0 in (p,t).<br>$T_{1/2}$ : from B(E2) and branching of 779 $\gamma$ . Others: 6 ps 3<br>(composite RDM, 1981Bo32), >2.6 ps or >3.1 ps (depending<br>on the extreme feeding assumptions) (1990Bo29)                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1270.214 <sup>&amp;</sup> 7 | 5-                                | 1.1 ns 2         | BCDEF J LMNO Q    | B(E5) <sup>†</sup> =0.00204 20 (1992P009)<br>J <sup>π</sup> : E1 γ to 4 <sup>+</sup> , L=5 in (p,p').<br>T <sub>1/2</sub> : from delayed coincidence (1970To14) in <sup>196</sup> Ir β <sup>-</sup> decay                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1293.308 <sup>#</sup> 7     | 4+                                | 2.6 ps +7-4      | DEF IJ LMN PQ     | $B(E4)\uparrow=0.0224\ 24$<br>$J^{\pi}: L=4 \text{ in } (p,p').$<br>$T_{1/2}: \text{ weighted average of } 2.9 \text{ ps } 6 \text{ (RDM 1981Bo32) and } 2.4 \text{ ps } +11-3 \text{ from } B(E2). \text{ See Coulomb excitation.}$<br>$B(E4)\uparrow: \text{ Weighted average of } 0.0201\ 28 \text{ from } (e,e') \text{ and } 0.025  3 \text{ from } (pol p,p').$                                                                                                                                                                                                                                                                                                         |
| 1361.585 <sup>@</sup> 5     | 2+                                |                  | CDEF HI K MN Q    | XREF: M(1350).<br>$J^{\pi}$ : E2 $\gamma$ to 2 <sup>+</sup> , $\gamma$ 's to 0 <sup>+</sup> and 4 <sup>+</sup> .<br>$T_{1/2}$ : $T_{1/2}$ =50 ps +44–19 computed from B(E2)=0.0008 +7–3<br>in Coulomb excitation and adopted $\gamma$ -ray properties.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1373.60 <sup>&amp;</sup> 19 | 7-                                | 5.2 ns 2         | B J LMN PQ        | $\mu = -0.21 \ 14$ XREF: P(1380).<br>J <sup><i>π</i></sup> : E2 $\gamma$ to 5 <sup>-</sup> , L=7 in (p,p').<br>T <sub>1/2</sub> : from $\gamma(\theta, H, t)$ (1983GoZP). Others: 4.01 ns 16 from<br>delayed coin (1970ToZZ), 4.0 ns (1984Sc19).<br>$\mu$ : From $g = -0.03 \ 2$ (1983GoZP). Compilation: 2005St24                                                                                                                                                                                                                                                                                                                                                            |
| 1402.727 10                 | 0+                                | 1.6 ps 3         | A DEFGHI Q S      | $J^{\pi}$ : L=0 in (p,t).<br>$T_{1/2}$ : from >1.29 ps for lower limit; <1.9 ps for upper limit<br>(1990Bo29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1429.74? 25                 | (5 <sup>-</sup> ,6 <sup>+</sup> ) |                  | В                 | $J^{\pi}$ : $\gamma$ 's from 2455 to 7 <sup>-</sup> and 9 <sup>-</sup> , from 1430 to 4 <sup>+</sup> , and a connecting 2455 to 1430 $\gamma$ give $J^{\pi}(2455)=7^{-}$ or 8, and $J^{\pi}(1430)=5$ or 6 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1447.043 7                  | 3-                                | 0.62 ns 17       | CDEF J MNO Q S    | $\beta_3 = 0.050 5 (1988Co19)$<br>B(E3) $\uparrow = 0.103 4$<br>J <sup><math>\pi</math></sup> : E1 $\gamma$ to 2 <sup>+</sup> , L=3 in (p,t).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

# <sup>196</sup>Pt Levels (continued)

| E(level) <sup>†</sup>                   | J <sup>πa</sup>                  | T <sub>1/2</sub> |     | XR     | EF   |      | Comments                                                                                                                                                                                                                                                            |
|-----------------------------------------|----------------------------------|------------------|-----|--------|------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         |                                  |                  |     |        |      |      | <ul> <li>T<sub>1/2</sub>: deduced from B(E3) and adopted γ-ray properties.</li> <li>See Coulomb excitation.</li> <li>B(E3)<sup>↑</sup>: See Coulomb excitation.</li> </ul>                                                                                          |
| 1525.8 <sup>‡</sup> 5                   | 6+                               | 0.98 ps +11-5    |     |        | LMN  | pQ   | XREF: $p(1530)$ .<br>$J^{\pi}$ : g.s. band member.<br>$T_{1/2}$ : weighted average of 1.0 ps 3 (RDM, 1981Bo32) and<br>0.98 ps +12-5 from B(E2). See Coulomb excitation.<br>$O_{-}=0.18.26$ (1992) i14). Compilation: 20058(24)                                      |
| 1535.8 6                                | 4+                               |                  | Ι   | D      | LMN  | pQ S | $B(E4)\uparrow=0.0045 \ 8 \ (1991Se04)$<br>XREF: p(1530).<br>Related to the K=4 two-phonon $\gamma$ -vibration.                                                                                                                                                     |
| 1604.494 10                             | 2+                               |                  | I   | DEF H  | M    | PQ   | $J^{*:} \gamma$ s to $2^{*}$ and $3^{*}$ , L=4 in (p,p').<br>XREF: Q(1606),p(1600).<br>$J^{\pi}$ : L=2 in (p,p') and (p,t).                                                                                                                                         |
| 1609.74 <sup>#</sup> 20                 | (5 <sup>+</sup> )                |                  |     |        | KL N |      | $J^{\pi}$ : from boson expansion theory (1980We08) and $\gamma$ -band systematics (1983R 224) $\gamma$ 's to 3 <sup>+</sup>                                                                                                                                         |
| 1677.256 12                             | 2+                               |                  | Ι   | DEFGHI | М    | PQ S | XREF: P(1670).<br>XREF: Q(1675),p(1670).<br>$J^{\pi}$ : E0 component in 989 $\gamma$ to 2 <sup>+</sup> .                                                                                                                                                            |
| 1679.81 <sup>&amp;</sup> 20             | (6 <sup>-</sup> )                |                  |     |        | LM   |      | $J^{\pi}$ : from level energy systematics in <sup>196</sup> Pt(d,pn $\gamma$ ), $\gamma$ 's to                                                                                                                                                                      |
| 1754.655 9                              | 3-,4+                            |                  |     | EF     | М    |      | $J^{\pi}$ : $\gamma'$ s from 2469 to 0 <sup>+</sup> and 2 <sup>+</sup> , from 1755 to 3 <sup>-</sup> and 5 <sup>-</sup> ,<br>and a connecting 2469 to 1755 $\gamma$ give $J^{\pi}(2469)=1^{-}$ or<br>2 <sup>+</sup> , and $J^{\pi}(1755)=3^{-}$ or 4 <sup>+</sup> . |
| 1795.09 6                               | 2+,(1-)                          |                  | C   | dEFGH  |      | Q    | XREF: $d(1798)$ .<br>J <sup><math>\pi</math></sup> : $\gamma$ 's to 2 <sup>+</sup> and 0 <sup>+</sup> gives 1, 2 <sup>+</sup> . ARC suggests 0 <sup>+</sup> , 2 <sup>+</sup> , $(0^-, 1^-, 2^-)$ .                                                                  |
| 1802.302 10                             | 1+,2+                            |                  | C   | dEFGH  |      |      | XREF: $d(1798)$ .                                                                                                                                                                                                                                                   |
| 1804.80 10                              | (3 <sup>+</sup> ),4 <sup>+</sup> |                  |     |        | K    |      | $J^{\pi}$ : E2 $\gamma$ to 2 <sup>+</sup> .                                                                                                                                                                                                                         |
| 1820.69 <sup>&amp;</sup> 24             | 9-                               | <1 ns            | В   |        | LN   |      | $J^{\pi}$ : E2 $\gamma$ to 7 <sup>-</sup> , negative-parity band member.<br>Two: from $\gamma\gamma(t)$ (19681a06) in <sup>196</sup> Ir $\beta^{-}$ decay (1.40 h)                                                                                                  |
| 1823.23 6                               | $0^{+}$                          |                  | A I | DEF H  | М    | Q    | $T_{1/2}$ from $p(0)$ (110 from $p(0)$ (110 from $p(0)$ )<br>XREF: d(1819),M(1826),Q(1824).                                                                                                                                                                         |
| 1825.715 8                              | 2+                               |                  |     | EF     |      |      | $J^{\pi}$ : $\gamma'$ s to 0 <sup>+</sup> and 3 <sup>-</sup> allows 1 <sup>-</sup> or 2 <sup>+</sup> . ARC gives $0^+, 1^+, 2^+$ , so perhaps 1 <sup>-</sup> is ruled out.                                                                                          |
| 1831.99 <i>13</i><br>1847.348 <i>18</i> | 3+<br>2+                         |                  | I   | DEF H  | K    | QS   | $J^{\pi}$ : M1+E2 $\gamma$ to 2 <sup>+</sup> ,3 <sup>+</sup> ,4 <sup>+</sup> .<br>XREF: d(1846),Q(1848).                                                                                                                                                            |
| 1853.659 12                             | 2+                               |                  |     | EF H   |      |      | $J^{\pi}$ : L=2 in <sup>196</sup> Pt(p,t) and <sup>194</sup> Pt(t,p).<br>$J^{\pi}$ : $\gamma$ 's to 0 <sup>+</sup> and 4 <sup>+</sup> .                                                                                                                             |
| 1883.34 9                               | 3+,4+                            |                  | Ι   | D .    | M    | PQ S | B(E4)↑=0.0400 <i>19</i><br>XREF: M(1887),p(1880),Q(1884).                                                                                                                                                                                                           |
|                                         |                                  |                  |     |        |      |      | J <sup><math>\pi</math></sup> : M1+E2 $\gamma$ to 2 <sup>+</sup> ,4 <sup>+</sup> , L=4 in <sup>196</sup> Pt(p,p').<br>B(E4)↑: Weighted average of 0.044 <i>13</i> (1985Bo14),<br>0.0398 <i>19</i> (1991Se04), and 0.044 <i>13</i> (1992Po09).                       |
| 1888.139 <i>13</i>                      | 1+,2+                            | 1.3 ps +8-6      |     | EFGH   |      |      | $J^{\pi}$ : $\gamma$ 's to 0 <sup>+</sup> and 2 <sup>+</sup> , ARC gives 1 <sup>+</sup> , (0 <sup>+</sup> , 2 <sup>+</sup> ).<br>T <sub>1/2</sub> : from Doppler broadening (1990Bo29) in <sup>195</sup> Pt(n, $\gamma$ )<br>E=thermal                              |
| 1901.7 <sup>&amp;</sup> 3               | (8 <sup>-</sup> )                |                  |     |        | L    |      | $J^{\pi}$ : from level energy systematics in <sup>196</sup> Pt(d,pn $\gamma$ ), $\gamma$ 's to                                                                                                                                                                      |
| 1901.89 <i>10</i><br>1918.54 <i>4</i>   | 5,6,7<br>0 <sup>+</sup>          |                  | A I | DEF H  | K    |      | $J^{\pi}$ : From excitation functions in 2002Ta14.<br>XREF: d(1916).                                                                                                                                                                                                |
| 1932.01 11                              | 0+,1+,2+                         |                  | I   | DEF H  |      | Q    | $J^{\pi}$ : $\gamma'$ s to $2^{-}$ .<br>XREF: d(1935).<br>$J^{\pi}$ : $\gamma'$ s to $2^{+}$ , ARC gives $0^{+}, 1^{+}, 2^{+}$ .                                                                                                                                    |

# <sup>196</sup>Pt Levels (continued)

| E(level) <sup>†</sup>                          | J <sup>πa</sup>                                                                                      | T <sub>1/2</sub> | XREF            | Comments                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1957.25 20                                     | (4),5 <sup>+</sup> ,6 <sup>+</sup>                                                                   |                  | K               | $J^{\pi}$ : From excitation functions in 2002Ta14.                                                                                                                                                                                                                                                              |
| 1968.906 12                                    | $1^+,(2^+)$                                                                                          |                  | DEFGH M P       | XREF: $d(1971), M(1964), p(1960).$                                                                                                                                                                                                                                                                              |
| 1984.93 5                                      | 1+,2+                                                                                                |                  | EFHK o          | $J^{*:} \gamma$ s to 0° and 2°, L=2+4 in $Z^{*}$ Au(d, He).<br>q XREF: Q(1987).                                                                                                                                                                                                                                 |
| 1988.218 9                                     | 1+,2+                                                                                                |                  | EF c            | q XREF: Q(1987).<br>$I^{\pi}: I^{\pi}=0^+$ 1 <sup>+</sup> and 2 <sup>+</sup> from F1 deexcitation from capture                                                                                                                                                                                                  |
| 1991.7 <i>4</i>                                | 3,4+                                                                                                 |                  | K               | level 0 <sup>-</sup> , and 1 <sup>-</sup> , 0 <sup>+</sup> is ruled out from $\gamma$ 's to 3 <sup>-</sup> .<br>J <sup><math>\pi</math></sup> : $\gamma$ to 2 <sup>+</sup> , ARC in 1979Ci04, large uncertainties of A <sub>2</sub> and A <sub>4</sub> in 2002Ta14. 3 in figure 2 of 2002Ta14.                  |
| 1998.96 4                                      | 2+                                                                                                   |                  | EFGHi           | XREF: I(2010).                                                                                                                                                                                                                                                                                                  |
| 2002.36 <i>20</i><br>2006 <i>4</i>             | (3 <sup>+</sup> ),4 <sup>+</sup><br>4 <sup>+</sup>                                                   |                  | K<br>D iJK M d  | $J^{\pi}$ : $\gamma$ s to 0° and 4°.<br>$J^{\pi}$ : M1+E2 $\gamma$ to 4 <sup>+</sup> .<br>q XREF: I(2010),Q(2006).<br>$J^{\pi}$ : L=4 in (p,p') and (t,p). A <sub>2</sub> >0 inconsistent with the known                                                                                                        |
| 2007.4 <sup>#</sup> 5                          | 6+                                                                                                   | 0.77 ps 19       | іК N о          | spin assignment in 20021a14.<br><b>q</b> XREF: I(2010),Q(2006).<br>$J^{\pi}$ : E2 $\gamma$ to 4 <sup>+</sup> , $\gamma$ 's to 6 <sup>+</sup> , $\gamma$ -band member.<br>$T_{1/2}$ : deduced from B(E2) and adopted $\gamma$ -ray properties, see                                                               |
| 2013.88 3                                      | 2+                                                                                                   |                  | EFGHi           | Coulomb excitation.<br>XREF: I(2010).<br>$J^{\pi}$ : $\gamma$ 's to 4 <sup>+</sup> and 3 <sup>-</sup> , E1 $\gamma$ from 0 <sup>-</sup> , 1 <sup>-</sup> capture level in (n, $\gamma$ )<br>E=thermal                                                                                                           |
| 2029.8 <i>3</i><br>2046.99 <i>6</i>            | 3+<br>2+                                                                                             |                  | K<br>DEF H po   | <b>g</b> S XREF: p(2050),Q(2052).<br>J <sup>π</sup> : $\gamma$ 's to 3 <sup>+</sup> , L=(2) natural parity in <sup>194</sup> Pt(t,p). E1 γ from                                                                                                                                                                 |
| 2055 3                                         | 1+,2+                                                                                                |                  | M po            | q XREF: p(2050),Q(2052).<br>$\pi_{1} = -0.12 \text{ in } \frac{197}{2} \text{ Au}(d^{-3} \text{He})$                                                                                                                                                                                                            |
| 2067.06 11                                     | 5-,6                                                                                                 |                  | K               | J <sup><math>\pi</math></sup> : From $\gamma(\theta)$ and excitation functions in 2002Ta14. 5,6,7 in figure 2 of 2002Ta14                                                                                                                                                                                       |
| 2069.29 <i>20</i><br>2072<br>2084.30 <i>11</i> | 0 <sup>+</sup> ,1 <sup>+</sup> ,2 <sup>+</sup><br>6 <sup>+</sup><br>4 <sup>-</sup> ,5,6 <sup>-</sup> |                  | EF H<br>K       | J <sup><math>\pi</math></sup> : $\gamma$ 's to 2 <sup>+</sup> .<br>J <sup><math>\pi</math></sup> : from $\gamma(\theta)$ and DWBA in <sup>198</sup> Pt(p,t).<br>J <sup><math>\pi</math></sup> : From $\gamma(\theta)$ and excitation functions in 2002Ta14. (5) in                                              |
| 2087.327 21                                    | 3 <sup>-</sup> ,4 <sup>+</sup>                                                                       |                  | EF              | Ingure 2 of 2002 fai4.<br>$J^{\pi}$ : $\gamma'$ s to 2 <sup>+</sup> and 5 <sup>-</sup> .                                                                                                                                                                                                                        |
| 2093.0 3                                       | (21)                                                                                                 |                  | DEFGH (         | Q S XREF: Q(2095).<br>J <sup><math>\pi</math></sup> : L=(2) in <sup>194</sup> Pt(t.p), $\gamma$ 's to 2 <sup>+</sup> and 3 <sup>-</sup> .                                                                                                                                                                       |
| 2116 2<br>2124.389 22                          | 3-,4+                                                                                                |                  | d M (<br>dEF po | Q XREF: d(2120).<br>q XREF: d(2120),p(2120),Q(2128).                                                                                                                                                                                                                                                            |
| 2126.935 15                                    | 2+                                                                                                   |                  | dEFH M po       | $J^{\pi}$ : $\gamma$ 's to 2 <sup>+</sup> and 5.<br><b>XREF</b> : d(2120),p(2120),Q(2128).<br>$J^{\pi}$ : $\gamma$ 's to 2 <sup>+</sup> and 3 <sup>-</sup> , 4 <sup>+</sup> , L=2 in <sup>197</sup> Au(d, <sup>3</sup> He). E1 $\gamma$ from<br>$0^{-}$ 1 <sup>-</sup> capture level in (n $\gamma$ ) E=thermal |
| 2161.5? <i>4</i><br>2162.70 8                  | (9 <sup>-</sup> ,10,11 <sup>-</sup> )<br>2 <sup>+</sup>                                              |                  | B<br>EFGH (     | $J^{\pi}$ : $\gamma$ 's to $9^-$ , $\gamma$ 's from $(9^-, 10, 11^-)$ .<br><b>Q</b> XREF: Q(2164).<br>$J^{\pi}$ : $\gamma$ 's to $2^+$ and $3^-$ .                                                                                                                                                              |
| 2170.73 19                                     | (5),6 <sup>(-)</sup>                                                                                 |                  | K               | $J^{\pi}$ : From $\gamma(\theta)$ and excitation functions in 2002Ta14. 6 <sup>-</sup> ,7 <sup>-</sup> in                                                                                                                                                                                                       |
| 2174.43 12                                     | 0+,2+                                                                                                |                  | DEFH m (        | <b>Q</b> XREF: M(2179).<br>$\vec{P}$ : E1 $\alpha$ from $0^{-1}$ = canture level in (n $\alpha$ ) E-thermal                                                                                                                                                                                                     |
| 2183.6 <i>3</i>                                | 1+,2+                                                                                                |                  | EF H m          | XREF: M(2179).<br>$\vec{r}_{1} \sim c_{2}$ to $0^{+}$                                                                                                                                                                                                                                                           |
| 2199.45 5                                      | 0+                                                                                                   |                  | DEF H (         | Q XREF: $d(2196),Q(2193).$<br>J <sup><math>\pi</math></sup> : L=0 in <sup>194</sup> Pt(t,p).                                                                                                                                                                                                                    |

# <sup>196</sup>Pt Levels (continued)

| E(level) <sup>†</sup> | $J^{\pi a}$                        | T <sub>1/2</sub> | XREF      |     | Comments                                                                                                                                                                                  |
|-----------------------|------------------------------------|------------------|-----------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2204.431 12           | 1+,2+                              | ·                | EFGH      | Q   | $J^{\pi}$ : $\gamma$ 's to 0 <sup>+</sup> , E1 $\gamma$ from 0 <sup>-</sup> , 1 <sup>-</sup> capture level in (n, $\gamma$ )                                                              |
| 2229.6 3              | 2+                                 |                  | EFGH      |     | $J^{\pi}$ : $\gamma$ 's to 2 <sup>+</sup> and 4 <sup>+</sup> .                                                                                                                            |
| 2236.32 21            | (5),6 <sup>-</sup> ,7 <sup>-</sup> |                  | K         |     | $J^{\pi}$ : From excitation functions. (5),6,7 in figure 2 of 2002Ta14                                                                                                                    |
| 2244.57 20            | 3+,4,5+                            |                  | K         |     | $J^{\pi}$ : $\gamma$ to 4 <sup>+</sup> , $\gamma(\theta)$ and excitation functions in 2004Ta14.<br>3 <sup>+</sup> 4 <sup>+</sup> 5 <sup>+</sup> (6 <sup>+</sup> ) in figure 2 of 2002Ta14 |
| 2245.559 14           | $1^+, 2^+$                         | 0.13 ps 4        | EFGH M    | RS  | XREF: M(2243).                                                                                                                                                                            |
|                       |                                    | -                |           |     | $T_{1/2}$ : from $\Gamma_0/\Gamma=0.77 \ 3$ , $\Gamma_0=2.7 \ \text{meV} \ 9$ in $^{196}\text{Pt}(2, 2')$                                                                                 |
|                       |                                    |                  |           |     | $J^{\pi}$ : $\gamma$ 's to 0 <sup>+</sup> , E1 $\gamma$ from 0 <sup>-</sup> , 1 <sup>-</sup> capture level in (n, $\gamma$ )<br>E=thermal.                                                |
| 2252.7 <sup>‡</sup> 6 | 8+                                 | 0.42 ps +4-5     | N         |     | $J^{\pi}$ : E2 $\gamma$ to 6 <sup>+</sup> , $\gamma$ 's to 7 <sup>-</sup> and 9 <sup>-</sup> , ground-state band member.                                                                  |
|                       |                                    |                  |           |     | $T_{1/2}$ : deduced from B(E2) and adopted $\gamma$ -ray properties, see Coulomb excitation.                                                                                              |
| 2262.428 16           | 2+                                 |                  | dEF H     | QS  | XREF: d(2267).                                                                                                                                                                            |
| 2271.2.4              | <b>a</b> +                         |                  | J 11 17   |     | $J^{\pi}$ : $\gamma$ 's to 1 <sup>+</sup> and 3 <sup>+</sup> , L=(2) in <sup>194</sup> Pt(t,p) for E=2267 6.                                                                              |
| 22/1.2 4              | 2                                  |                  | анк       |     | $I^{\pi}$ : M1+F2 $\gamma$ to 2 <sup>+</sup>                                                                                                                                              |
| 2277 4                | 9-                                 |                  |           | Q   | $J^{\pi}$ : from $\gamma(\theta)$ and DWBA (1981HyZY) in <sup>198</sup> Pt(p,t).                                                                                                          |
| 2280 2                | 4+                                 |                  | JM        |     | $J^{\pi}$ : L=4 in <sup>196</sup> Pt(p,p').                                                                                                                                               |
| 2296 4                | $(7^{-}, 8^{+})$                   |                  |           | Q   | $J^{\pi}$ : from L=7; $J^{\pi} = 8^+$ , E=2293 keV from $\gamma(\theta)$ and DWBA (1981HyZY)                                                                                              |
| 2309.23 4             | $(2)^{+}$                          |                  | DEF H M   |     | XREF: d(2305),K(2305).                                                                                                                                                                    |
|                       |                                    |                  |           |     | $J^{\pi}$ : L=(2) in <sup>194</sup> Pt(t,p), $\gamma$ 's to 0 <sup>+</sup> and 2 <sup>+</sup> .                                                                                           |
| 2324.224 22           | 1+,2+                              |                  | DEF H M   |     | XREF: $d(2326), M(2331).$<br>J <sup><math>\pi</math></sup> : $\gamma$ 's to 2 <sup>+</sup> and 0 <sup>+</sup> .                                                                           |
| 2345.3 <i>3</i>       | $1^+, 2^+$                         |                  | EF H M    |     | XREF: M(2349).                                                                                                                                                                            |
| 2365.976 19           | 2+                                 |                  | EF H M    | q   | $J^{\pi}$ : $\gamma$ 's to 0 <sup>+</sup> .<br>XREF: O(2370).                                                                                                                             |
|                       |                                    |                  |           | •   | $J^{\pi}$ : $\gamma$ 's to $2^+$ and $3^-$ .                                                                                                                                              |
| 2375.11 19            | $1^+, 2^+$                         |                  | EF H      | q   | XREF: Q(2370). $I^{\pi_{1}}$ a/s to 0 <sup>+</sup> and 2 <sup>+</sup>                                                                                                                     |
| 2383.33 6             | 0+,1+,2+                           |                  | EF H      | Q   | XREF: Q(2386).                                                                                                                                                                            |
| 2202.2                |                                    |                  | v         |     | $J^{\pi}$ : $\gamma$ 's to 2 <sup>+</sup> .                                                                                                                                               |
| 2393 2                | 2+                                 |                  | M<br>FFCH |     | $I^{\pi}$ , $\gamma$ 's to $2^+$ and $4^+$                                                                                                                                                |
| 2409.00 0             | $(2,3,4^+)$                        | 68 fs            | K         |     | $J^{\pi}$ : from data on $\gamma(\theta)$ , excitation functions, decay                                                                                                                   |
|                       |                                    |                  |           |     | patterns and $T_{1/2}$ . See (n,n' $\gamma$ ).                                                                                                                                            |
|                       |                                    |                  |           |     | $T_{1/2}$ : from DSA in (n,n' $\gamma$ ), $\Delta T_{1/2}$ =+400-37 (1993Di05).                                                                                                           |
| 2422.51 4             | $0^+, 1^+, 2^+$                    |                  | DEF H     |     | XREF: $d(2419)$ .                                                                                                                                                                         |
| 2423.42 7             | $(1^+, 2^+, 3)$                    | 67 fs +58-24     | К         |     | $J^{\pi}$ : from data on $\gamma(\theta)$ , excitation functions, decay                                                                                                                   |
|                       |                                    |                  |           |     | patterns and $T_{1/2}$ . See (n,n' $\gamma$ ).                                                                                                                                            |
| 2422 7 3              | 2-                                 |                  |           | 0.0 | $T_{1/2}$ : from DSA in $(n, n'\gamma)$ (1993Di05).                                                                                                                                       |
| 2423.7 3              | 3                                  |                  |           | ŲS  | $J^{*}$ : $\gamma$ to $Z^{*}$ , $S^{*}$ . $\gamma(\theta)$ and DWBA from 1981HyZY suggests $7^{-1}$                                                                                       |
| 2429.7 4              | 3-                                 | >166 fs          | JK M      |     | $\beta_3 = 0.042 \ 4 \ (1988 \text{Col9})$                                                                                                                                                |
|                       |                                    |                  |           |     | B(E3)↑=0.079 10                                                                                                                                                                           |
|                       |                                    |                  |           |     | $J^{\pi}$ : L=3 in <sup>196</sup> Pt(p,p').                                                                                                                                               |
|                       |                                    |                  |           |     | $T_{1/2}$ : trom DSA in $(n, n'\gamma)$ (1993Di05).<br>B(E3) $\uparrow$ : Weighted average of 0.070 <i>IA</i> (1088Co10) and                                                              |
|                       |                                    |                  |           |     | $0.087 \ 14 \ (1992Po09).$                                                                                                                                                                |
| 2433.7 2              | (0,1,2,3,4)                        | 17 fs +12-7      | K         |     | J <sup><math>\pi</math></sup> : from data on $\gamma(\theta)$ , excitation functions, decay                                                                                               |
|                       |                                    |                  |           |     | patterns and $T_{1/2}$ .                                                                                                                                                                  |

# <sup>196</sup>Pt Levels (continued)

| E(level) <sup>†</sup>                   | J <sup>πa</sup>                                                  | T <sub>1/2</sub> | XREF           |        | Comments                                                                                                                                                                                                                                                                   |
|-----------------------------------------|------------------------------------------------------------------|------------------|----------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2438.0 1                                | (1+,2,3,4+)                                                      | 53 fs +37-17     | K              |        | $T_{1/2}$ : from DSA (1993Di05).<br>J <sup><math>\pi</math></sup> : from data on $\gamma(\theta)$ , excitation functions, decay                                                                                                                                            |
| 2443.93 22                              | 2+                                                               |                  | DEFGH          | Q      | patterns and $T_{1/2}$ .<br>$T_{1/2}$ : from DSA (1993Di05).<br>XREF: d(2449),Q(2440).                                                                                                                                                                                     |
| 2454.2 <i>3</i><br>2460.1 <i>3</i>      | $(7^-, 8^+)$<br>$0^+, 1^+, 2^+$                                  |                  | B<br>EF H      | Q      | $J^{A}$ : $\gamma$ 's to 2' and 4'.<br>$J^{\pi}$ : see 1430 level.<br>XREF: Q(2462).<br>$I^{\pi}$ .                                                                                                                                                                        |
| 2468.0 <i>3</i>                         | 10 <sup>-</sup> ,11 <sup>-</sup>                                 | <1 ns            | В              |        | J <sup>*</sup> : $\gamma$ 's to 2 <sup>+</sup> .<br>J <sup><math>\pi</math></sup> : E2 $\gamma$ to 9 <sup>-</sup> , no $\gamma$ to J <sup><math>\pi</math></sup> <9.<br>T <sub>1/2</sub> : from $\beta\gamma$ (t) measurements (1968Ja06) in <sup>196</sup> Ir $\beta^{-}$ |
| 2469.85 <i>17</i><br>2488.238 <i>24</i> | 1 <sup>-</sup> ,2 <sup>+</sup><br>1 <sup>+</sup> ,2 <sup>+</sup> |                  | EFH M<br>defh  |        | decay (1.40 h).<br>$J^{\pi}$ : see 1755 level.<br>XREF: d(2489).                                                                                                                                                                                                           |
| 2493.5 <i>11</i><br>2505.12 <i>5</i>    | $0^+, 1^+, 2^+$<br>$2^+$                                         |                  | d GH<br>EF H M |        | $J^{A}$ : $\gamma$ 's to 0 <sup>+</sup> and 2 <sup>+</sup> .<br>XREF: d(2489).<br>XREF: M(2505).<br>$I^{A}$ : $\alpha'_{0}$ to 0 <sup>+</sup> E1 or from 0 <sup>-</sup> 1 <sup>-</sup> conturb level in (n or).                                                            |
| 2527.84 4                               | 1+,2+                                                            |                  | dEF H          | Q      | E=thermal.<br>$J^{\pi}$ : $\gamma$ 's to 0 <sup>+</sup> and 3 <sup>-</sup> , E1 $\gamma$ from capture level in (n, $\gamma$ )                                                                                                                                              |
| 2529.3 3                                | 2+                                                               |                  | dEFGH          | Q      | E=thermal.<br>XREF: d(2529).<br>$J^{\pi}$ : $\gamma$ 's to 4 <sup>+</sup> , E1 $\gamma$ from 0 <sup>-</sup> , 1 <sup>-</sup> capture level in (n, $\gamma$ )                                                                                                               |
| 2545 <i>5</i><br>2553.8 8               | 0+,2+                                                            |                  | m<br>EH m      | Q<br>Q | E=thermal.<br>XREF: M(2550).<br>XREF: M(2550).<br>$J^{\pi}$ : E1 $\gamma$ from 0 <sup>-</sup> , 1 <sup>-</sup> capture level in (n, $\gamma$ ) E=thermal.<br>$J^{\pi}$ : from the average capture results in <sup>195</sup> Pt(n, $\gamma$ ) E=2                           |
| 2570.8 7                                | 1+                                                               | 0.021 ps 4       | FH M           | R      | keV.<br>$J^{\pi}$ : from M1 excitation in <sup>196</sup> Pt( $\gamma, \gamma'$ ).<br>$T_{1/2}$ : from $\Gamma_0/\Gamma=0.63$ 6, $\Gamma_0=13.6$ meV 22 in                                                                                                                  |
| 2586.9 7                                | 0+,2+                                                            |                  | d Hi M         |        | $^{196}$ Pt( $\gamma, \gamma'$ ).<br>XREF: d(2591),I(2600).<br>$I^{\pi}$ : L = (2) in $^{194}$ Pt(t p)                                                                                                                                                                     |
| 2599.1 9                                | (0,1 <sup>-</sup> ,2)                                            |                  | d F Hi         |        | XREF: d(2591),I(2600).<br>J <sup><math>\pi</math></sup> : from the average capture results in <sup>195</sup> Pt(n, $\gamma$ ) E=2                                                                                                                                          |
| 2603.2 2                                | (1,2,3,4,5)                                                      | >66 fs           | i K            |        | keV.<br>XREF: I(2600).<br>$J^{\pi}$ : from data on $\gamma(\theta)$ , excitation functions, decay<br>patterns and $T_{1/2}$ .                                                                                                                                              |
| 2606.0 1                                | (2,3,4,5)                                                        | >111 fs          | i K            |        | T <sub>1/2</sub> : from DSA (1993Di05).<br>XREF: I(2600).<br>J <sup>π</sup> : from data on $\gamma(\theta)$ , excitation functions, decay patterns and T <sub>1/2</sub> .                                                                                                  |
| 2606.8 8                                | 0 <sup>+</sup> ,2 <sup>+</sup> ,(1 <sup>+</sup> )                |                  | Hi             | q      | T <sub>1/2</sub> : from DSA (1993Di05).<br>XREF: I(2600),Q(2609).<br>$J^{\pi}$ : from the average capture results in <sup>195</sup> Pt(n, $\gamma$ ) E=2                                                                                                                   |
| 2608.0 2                                | 3-                                                               | 31 fs +12-8      | i K M          | q      | keV.<br>B(E3)↑=0.034 7 (1988Co19); β <sub>3</sub> =0.029 3 (1988Co19)<br>XREF: I(2600),Q(2609).<br>J <sup>π</sup> : L=3 in <sup>196</sup> Pt(p,p').                                                                                                                        |
| 2614.5 7                                | 0+,1+,2+                                                         |                  | E Hi           | q      | T <sub>1/2</sub> : from DSA (1993Di05).<br>XREF: I(2600),Q(2609).<br>$J^{\pi}$ : from the average capture results in <sup>195</sup> Pt(n, $\gamma$ ) E=2 keV.                                                                                                              |

# <sup>196</sup>Pt Levels (continued)

| E(level) <sup>†</sup>                                             | J <sup>πa</sup>                                                                                   | T <sub>1/2</sub> | XREF        |   | Comments                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------|-------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2626.4 1                                                          | (1,2,3)                                                                                           | 83 fs            | К           |   | $J^{\pi}$ : from data on $\gamma(\theta)$ , excitation functions, decay                                                                                                                                                                                                                                                                                                                                                             |
| 2629.9 8                                                          | 2+                                                                                                |                  | D H         | Q | patterns and $T_{1/2}$ .<br>$T_{1/2}$ : from DSA, $\Delta T_{1/2}$ =+527-42 (1993Di05).<br>XREF: d(2626),Q(2627).<br>$I^{\pi}$ : 0 <sup>+</sup> .2 <sup>+</sup> .(0 <sup>-</sup> .1 <sup>-</sup> .2 <sup>-</sup> ) from the average capture results.                                                                                                                                                                                |
| 2631.1 <i>I</i>                                                   | (2+,3,4+)                                                                                         | 24 fs +14-8      | K           |   | $J^{\pi}$ : L=(2) in <sup>194</sup> Pt(t,p).<br>$J^{\pi}$ : from data on $\gamma(\theta)$ , excitation functions, decay<br>patterns and $T_{1/2}$ .                                                                                                                                                                                                                                                                                 |
| 2638 <i>3</i>                                                     | 3-                                                                                                |                  | JM          | Q | T <sub>1/2</sub> : from DSA (1993Di05).<br>B(E3) $\uparrow$ =0.071 <i>10</i> ; β <sub>3</sub> =0.042 <i>4</i> (1988Co19)<br>XREF: Q(2635).<br>J <sup>π</sup> : L=3 in <sup>196</sup> Pt(p,p').                                                                                                                                                                                                                                      |
| 2659.8 8                                                          | 0+,1+,2+                                                                                          |                  | E GHI       | Q | <ul> <li>B(E3)↑: Weighted average of 0.0/0 <i>14</i> (1988Co19) and 0.072 <i>13</i> (1992Po09).</li> <li>XREF: I(2670),Q(2655).</li> <li>J<sup>π</sup>: from the average capture results in <sup>195</sup>Pt(n,γ) E=2</li> </ul>                                                                                                                                                                                                    |
| 2667.246 23                                                       | 1+,2+                                                                                             | 0.14 ps +2-1     | DEF Hi      | Q | keV.<br>XREF: I(2670).<br>$J^{\pi}$ : $\gamma$ 's to 0 <sup>+</sup> .<br>T <sub>1</sub> /2: from Doppler broadening (1990Bo29).                                                                                                                                                                                                                                                                                                     |
| 2676 3                                                            |                                                                                                   |                  | i           | Q | XREF: I(2670).                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2692.2 8                                                          | 3-                                                                                                | <b>&gt;55</b> fs | D K<br>KM   |   | $B(F_3)$ = 0.051 10 (1088Co10); $B_2$ = 0.036 4 (1088Co10)                                                                                                                                                                                                                                                                                                                                                                          |
| 2711.0 1                                                          | 5                                                                                                 | - 55 15          | K II        |   | $J^{\pi}$ : L=3 in <sup>196</sup> Pt(p,p').<br>T <sub>1/2</sub> : from DSA (1993Di05).                                                                                                                                                                                                                                                                                                                                              |
| 2723 5                                                            | 11-                                                                                               |                  | D           | 0 | $I^{\pi}$ : from $\alpha(\theta)$ and DWBA in <sup>198</sup> Pt(n t) (1081HyZV)                                                                                                                                                                                                                                                                                                                                                     |
| 2736.1                                                            | $(1^+)$                                                                                           | 0.13 ps 5        |             | R | J <sup><math>\pi</math></sup> : from M1 excitation in <sup>196</sup> Pt( $\gamma, \gamma'$ ).<br>T <sub>1</sub> $\gamma$ : from C <sub>0</sub> / $\Gamma$ =1. $\Gamma_0$ =3.6 meV 13 in <sup>196</sup> Pt( $\gamma, \gamma'$ )                                                                                                                                                                                                      |
| 2749.6 <sup>#</sup> 6                                             | (7 <sup>-</sup> ,8 <sup>+</sup> )                                                                 | 0.46 ps +8-6     | Ν           |   | $J^{\pi}$ : $\gamma$ 's to 6 <sup>+</sup> and 9 <sup>-</sup> .<br>T <sub>1/2</sub> : deduced from B(E2) and adopted $\gamma$ -ray properties.                                                                                                                                                                                                                                                                                       |
| 2757 4                                                            |                                                                                                   |                  | D           | Q | XREF: d(2756).                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2766 3                                                            |                                                                                                   |                  | D M         | Q | XREF: d(2774)                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2779 3                                                            |                                                                                                   |                  | 2 11        | Q |                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2797 3                                                            |                                                                                                   |                  | М           |   |                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 281/0                                                             | 1+                                                                                                | 7.1 fc 13        | D           | D | $I^{\pi}$ , from M1 excitation in <sup>196</sup> Pt( $\gamma, \gamma'$ )                                                                                                                                                                                                                                                                                                                                                            |
| 2024.0                                                            | 1                                                                                                 | 1.1 18 15        |             | K | T <sub>1/2</sub> : from $\Gamma_0/\Gamma=0.41$ 4, $\Gamma_0=27.5$ meV 42 in<br><sup>196</sup> Pt( $\gamma,\gamma'$ ).                                                                                                                                                                                                                                                                                                               |
| 2834 <i>5</i><br>2875.4                                           | $1^+,(2)^+$                                                                                       | 0.088 ps 15      | D<br>D      | R | J <sup><math>\pi</math></sup> : J <sup><math>\pi</math></sup> =1 <sup>+</sup> from M1 excitation in <sup>196</sup> Pt( $\gamma, \gamma'$ ), L=(2) in <sup>194</sup> Pt(t,p).                                                                                                                                                                                                                                                        |
| 2888.8? <i>4</i>                                                  | $(9^{-}, 10, 11^{-})$                                                                             |                  | В           | 0 | T <sub>1/2</sub> : from Γ <sub>0</sub> /Γ=1, Γ <sub>0</sub> =5.2 meV 9 in <sup>196</sup> Pt(γ,γ').<br>J <sup>π</sup> : γ's to 11 <sup>-</sup> and 9 <sup>-</sup> , log <i>ft</i> =6.5 from (10,11 <sup>-</sup> ).                                                                                                                                                                                                                   |
| $3044 0^{\ddagger} 9$                                             | $(10^{+})$                                                                                        |                  | N           | Q | $J^{\pi}$ : $\gamma'$ s to $8^+$ ground-state hand member                                                                                                                                                                                                                                                                                                                                                                           |
| 3124.2                                                            | 1,2                                                                                               | 0.13 ps 4        |             | R | $J^{\pi}$ : $\gamma$ excitation in <sup>196</sup> Pt( $\gamma,\gamma'$ ).<br>T <sub>1</sub> / $\gamma$ : from $\Gamma_0/\Gamma=1$ . $\Gamma_0=3.5$ meV 10 in <sup>196</sup> Pt( $\gamma,\gamma'$ )                                                                                                                                                                                                                                  |
| 3131.8                                                            | 1,2                                                                                               | 0.13 ps 4        |             | R | $J_{1/2}^{\pi}$ : $\gamma$ excitation in <sup>196</sup> Pt( $\gamma, \gamma'$ ).                                                                                                                                                                                                                                                                                                                                                    |
| 3161.9 <i>4</i><br>3176.3? <i>4</i><br>3214.8? <i>4</i><br>3298.0 | (9 <sup>-</sup> ,10,11 <sup>-</sup> )<br>(9 <sup>-</sup> )<br>(9 <sup>-</sup> )<br>2 <sup>+</sup> | 0.029 ns 4       | B<br>B<br>B | R | $J_{1/2}^{\pi}$ . from $I_{0/1} = 1$ , $I_{0} = 5.4$ meV 10 in $J_{0} P((\gamma, \gamma))$ .<br>$J^{\pi}$ : $\gamma'$ s to $11^{-}$ and $9^{-}$ , log $ft=5.9$ from $(10,11^{-})$ .<br>$J^{\pi}$ : $\gamma'$ s to $7^{-}$ and $9^{-}$ , log $ft=6.7$ from $(10,11^{-})$ .<br>$J^{\pi}$ : $\gamma'$ s to $7^{-}$ and $9^{-}$ , log $ft=6.5$ from $(10,11^{-})$ .<br>$J^{\pi}$ : $\gamma$ excitation in ${}^{196}Pt(\gamma, \gamma')$ |
| 22/010                                                            | -                                                                                                 | 0.025 po 1       |             | - |                                                                                                                                                                                                                                                                                                                                                                                                                                     |

#### <sup>196</sup>Pt Levels (continued)

| E(level) <sup>†</sup> | J <sup>πa</sup> | T <sub>1/2</sub> | XREF |   | Comments                                                                                                                                                                                                      |
|-----------------------|-----------------|------------------|------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3303 5 3              | $(10.11^{-})$   |                  | B    |   | $T_{1/2}$ : from $\Gamma_0/\Gamma=1$ , $\Gamma_0=15.7$ meV 21 in <sup>196</sup> Pt( $\gamma,\gamma'$ ).                                                                                                       |
| 3366.8                | 1,2             | 0.13 ps 3        | b    | R | $J^{\pi}$ : $\gamma$ excitation in <sup>196</sup> Pt( $\gamma, \gamma'$ ).                                                                                                                                    |
| 3424.3                | 1,2             | 0.064 ps 12      |      | R | T <sub>1/2</sub> : from $\Gamma_0/\Gamma=1$ , $\Gamma_0=3.5$ meV 7 in <sup>196</sup> Pt( $\gamma,\gamma'$ ).<br>J <sup><math>\pi</math></sup> : $\gamma$ excitation in <sup>196</sup> Pt( $\gamma,\gamma'$ ). |
|                       | ,               | 1                |      |   | $T_{1/2}$ : from $\Gamma_0/\Gamma=1$ , $\Gamma_0=7.1$ meV 13 in <sup>196</sup> Pt( $\gamma,\gamma'$ ).                                                                                                        |

<sup>†</sup> From least-squares fit to  $E\gamma'$ s. In addition to the (d,p) levels shown, broad peaks at 2010 20, 2600 20, and 2670 20 are reported. Each of these could correspond to one or more Adopted Levels.

<sup>‡</sup> Band(A): ground-state rotational band.

<sup>#</sup> Band(B):  $\gamma$  vibrational band.

<sup>(a)</sup> Band(C): Band based on the 0+(2) state Related either to the  $\beta$ -vibration or to the K=0 two-phonon  $\gamma$ -vibration.

& Band(D): semi-decoupled negative-parity band. <sup>*a*</sup> From the average capture results in <sup>195</sup>Pt( $n,\gamma$ ) E=2 keV, and other arguments as noted.

|                        | Adopted Levels, Gammas (continued)    |                                      |                              |                                                  |                    |              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|------------------------|---------------------------------------|--------------------------------------|------------------------------|--------------------------------------------------|--------------------|--------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                        | $\underline{\gamma(^{196}\text{Pt})}$ |                                      |                              |                                                  |                    |              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$                  | $E_{\gamma}^{\dagger}$               | $I_{\gamma}^{\ddagger}$      | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$         | Mult. <sup>d</sup> | $\delta^{f}$ | $\alpha^{g}$   | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 355.6841               | 2+                                    | 355.684 2                            | 100.0                        | 0.0 0+                                           | E2                 |              | 0.0603         | α(K)=0.0402 6;        α(L)=0.01520 22;        α(M)=0.00377 6;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 688.693                | 2+                                    | 332.983 24                           | 100.0 <i>23</i>              | 355.6841 2+                                      | E0+M1+E2           | -5.2 5       | 0.0782 17      | Measured prompt yrast $\gamma$ production cross sections in <sup>196</sup> Pt<br>reaction with 1-250 MeV spallation neutrons (2001Ta31).<br>B(E2)(W.u.)=54 +11-12; B(M1)(W.u.)=0.00058 +13-9<br>$\alpha$ (K)=0.0523 14; $\alpha$ (L)=0.0197 3; $\alpha$ (M)=0.00488 7;<br>$\alpha$ (N+)=0.001399 21<br>$\delta$ : from <sup>196</sup> Au $\varepsilon$ decay (6.1669 d).<br>Mult.: ce(E0)/I $\gamma$ ≈0.003 or 0.009 from Q <sup>2</sup> =ce(E0)/ce(E2)≈0.05 or<br>0.17 with $\alpha$ (K)=0.0529 from <sup>196</sup> Au $\varepsilon$ decay.<br>B(M1)(W.u.) and B(E2)(W.u.) values corrected, B. Singh, Aug 13,<br>2021. Previous value of B(M1)(W.u.)=0.0158 7 in this dataset<br>was incorrect since it corresponded to pure M1 for 332.98 $\gamma$ , not<br>M1+E2, $\delta$ =-5.2 5. Note that E0 admixture is considered<br>insignificant, as indicated by measured ce(E0)/I $\gamma$ ≈0.003 or 0.009<br>in <sup>196</sup> Au $\varepsilon$ decay. |  |  |  |  |
|                        |                                       | 688.76 <i>10</i>                     | <0.0005                      | 0.0 0+                                           | (E2)               |              | 0.01184        | Measured prompt nonyrast $\gamma$ production cross sections in <sup>196</sup> Pt<br>reaction with 1-250 MeV spallation neutrons (2001Ta31).<br>$\alpha(K)=0.00924$ 13; $\alpha(L)=0.00199$ 3; $\alpha(M)=0.000473$ 7;<br>$\alpha(N+)=0.0001375$ 20<br>B(E2)(W.u.)<7.8×10 <sup>-6</sup><br>B(E2)(W.u.) value edited, B. Singh, Aug 13, 2021. Previous value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| 876.865                | 4+                                    | 521.175 5                            | 100                          | 355.6841 2+                                      | E2                 |              | 0.0224         | was $4 \times 10^{-6}$ 4 in this dataset.<br>$\alpha(K)=0.01667$ 24; $\alpha(L)=0.00436$ 6; $\alpha(M)=0.001055$ 15;<br>$\alpha(N+)=0.000305$ 5<br>B(E2)(W.u.)=60.0 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 1015.044               | 3+                                    | 138.178 <i>4</i><br>326.349 <i>4</i> | 1.3 <i>4</i><br>100 <i>8</i> | 876.865 4 <sup>+</sup><br>688.693 2 <sup>+</sup> | [M1]<br>E2         |              | 2.65<br>0.0769 | Measured prompt yrast $\gamma$ production cross sections in <sup>196</sup> Pt<br>reaction with 1-250 MeV spallation neutrons (2001Ta31).<br>$\alpha(K)=2.18 \ 3$ ; $\alpha(L)=0.360 \ 5$ ; $\alpha(M)=0.0833 \ 12$ ; $\alpha(N+)=0.0246 \ 4 \ \alpha(K)=0.0496 \ 7$ ; $\alpha(L)=0.0207 \ 3$ ; $\alpha(M)=0.00516 \ 8$ ;<br>$\alpha(N+)=0.001478 \ 21$<br>Mult.: from K/L=2.7 8 in <sup>195</sup> Pt(n, $\gamma$ ) E=thermal.<br>Measured prompt nonyrast $\gamma$ production cross sections in <sup>196</sup> Pt                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                        |                                       | 659.389 <i>12</i>                    | 4.4 9                        | 355.6841 2+                                      | (M1)               |              | 0.0379         | reaction with 1-250 MeV spallation neutrons (2001Ta31).<br>$\alpha(K)=0.0314$ 5; $\alpha(L)=0.00501$ 7; $\alpha(M)=0.001153$ 17;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 1135.312               | $0^+$                                 | 446.613 <i>3</i>                     | 39 <i>3</i>                  | 688.693 2+                                       | E2                 |              | 0.0328         | $\alpha$ (N+)=0.000340 5<br>B(E2)(W.u.)=18 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |

 $^{196}_{78} {\rm Pt}_{118}$ -9

# $\gamma$ (<sup>196</sup>Pt) (continued)

| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\ddagger}$ | $E_f$    | $\mathbf{J}_f^{\pi}$ | Mult. <sup>d</sup> | α <sup>g</sup> | $\mathbf{I}_{(\gamma+ce)}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------|----------------------|------------------------|-------------------------|----------|----------------------|--------------------|----------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                      |                        |                         |          |                      |                    |                |                            | $\alpha(K)=0.0236\ 4;\ \alpha(L)=0.00704\ 10;\ \alpha(M)=0.001723\ 25;\ \alpha(N+)=0.000496$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1135.312               | 0+                   | 779.630 7              | 100 8                   | 355.6841 | 2+                   | E2                 | 0.00908        |                            | Mult.: from K/L=2.4 9 in <sup>195</sup> Pt(n, $\gamma$ ) E=thermal.<br>B(E2)(W.u.)=2.8 15<br>$\alpha$ (K)=0.00720 10; $\alpha$ (L)=0.001445 21; $\alpha$ (M)=0.000342 5;<br>$\alpha$ (N+)=9.96×10 <sup>-5</sup> 14                                                                                                                                                                                                                                                                                                                                                               |
|                        |                      | 1135.3 7               |                         | 0.0      | 0+                   | EO                 |                | <0.024                     | <ul> <li>Mult.: from α(K)exp=0.017 7 in <sup>195</sup>Pt(n,γ) E=thermal.</li> <li>I<sub>(γ+ce)</sub>: Iε: Ice(K)/Σ Iγ &lt;0.01 (1982Ka28), Σ Iγ/Iγ(779γ)=1.39.</li> <li>ce(K)&lt;0.6 (1982Ka28).</li> <li>ce(K): ce(K) is given for per 1000 capture events where it is assumed that 80% percent of capture events populate the 2(1)<sup>+</sup> state ce(K)&lt;0.01% for E0 branch, relative to the total depopulating intensity from 1135-keV level (1982Ka28).</li> <li>X(E0)=B(E0)[0<sup>+</sup> to 0+(0)]/B(E2)[0<sup>+</sup> to 2+(356)]&lt;0.005 (1982Ka28) in</li> </ul> |
| 1270.214               | 5-                   | 393.346 7              | 100                     | 876.865  | 4+                   | E1                 | 0.01396        |                            | <sup>195</sup> Pt(n,γ) E=thermal.<br>B(E1)(W.u.)=2.9×10 <sup>-6</sup> 6<br>$\alpha$ (K)=0.01159 <i>17</i> ; $\alpha$ (L)=0.00182 <i>3</i> ; $\alpha$ (M)=0.000419 <i>6</i> ;<br>$\alpha$ (N+)=0.0001220 <i>17</i>                                                                                                                                                                                                                                                                                                                                                                |
|                        |                      | 914.6 <i>3</i>         | 0.30 5                  | 355.6841 | 2+                   | [E3]               | 0.01533        |                            | Measured prompt yrast $\gamma$ production cross sections in <sup>196</sup> Pt reaction with<br>1-250 MeV spallation neutrons (2001Ta31).<br>B(E3)(W.u.)=2.7 7<br>$\alpha(K)=0.01145$ 16; $\alpha(L)=0.00295$ 5; $\alpha(M)=0.000716$ 10;<br>$\alpha(N+)=0.000209$ 3<br>or E3 $\alpha(theory)/c$ mult By 0.075 10 (Cf. 1000Na01)                                                                                                                                                                                                                                                  |
| 1293.308               | 4+                   | 416.443 6              | 17 5                    | 876.865  | 4+                   |                    |                |                            | <i>I</i> <sub><math>\gamma</math></sub> , E <sub><math>\gamma</math></sub> from <sup>196</sup> Ir $\beta^-$ decay (1.40 h).<br>Mult: $\gamma'$ s to 2 <sup>+</sup> , and from recommended upper limits for $\gamma$ -ray strengths.<br>$\alpha(K) = 0.0346$ ; $\alpha(L) = 0.00968$ ; $\alpha(M) = 0.00235$ ; $\alpha(N+) = 0.00072$<br>B(M1)(W.u.)=0.0076 25; B(E2)(W.u.)=17 6<br>Mult.: from recommended upper limits for $\gamma$ -ray strengths.<br>$\delta$ : extrapolated using a theoretical model of Greiner (1966Gr32), see                                             |
|                        |                      | 604.616 7              | 100 8                   | 688.693  | 2+                   | [E2]               | 0.01582        |                            | Coulomb excitation (1990Ma37).<br>1966GrZX reference corrected to 1966Gr32, B. Singh, Aug 13, 2021.<br>$\alpha(K)=0.01211 \ 17; \ \alpha(L)=0.00283 \ 4; \ \alpha(M)=0.000680 \ 10;$<br>$\alpha(N+)=0.000197 \ 3$<br>B(F2)(Wu)=29 +6-29                                                                                                                                                                                                                                                                                                                                          |
|                        |                      | 937.62 7               | 17 2                    | 355.6841 | 2+                   | [E2]               | 0.00622        |                            | Mult.: from $\gamma$ 's to 2 <sup>+</sup> and Coulomb excitation.<br>$\alpha$ (K)=0.00502 7; $\alpha$ (L)=0.000926 13; $\alpha$ (M)=0.000217 3;<br>$\alpha$ (N+)=6.34×10 <sup>-5</sup> 9<br>B(E2)(W.u.)=0.56 +12-17                                                                                                                                                                                                                                                                                                                                                              |
| 1361.585               | 2+                   | 226.270 3              | 4.3 10                  | 1135.312 | $0^{+}$              | [E2]               | 0.238          |                            | Mult.: from $\gamma'$ s to 2 <sup>+</sup> and Coulomb excitation.<br>B(E2)(W.u.)=5 5<br>$\alpha(V)=0.1244$ /V: $\alpha(L)=0.0855$ /2: $\alpha(M)=0.0217$ 2: $\alpha(N+1)=0.00618$ 0                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                      | 346.541 3              | 22 4                    | 1015.044 | 3+                   | [M1]               | 0.207          |                            | $\begin{array}{l} \alpha(\mathbf{K}) = 0.1244 \ 10, \ \alpha(\mathbf{L}) = 0.0855 \ 12; \ \alpha(\mathbf{M}) = 0.0217 \ 5; \ \alpha(\mathbf{N}+) = 0.00618 \ 9 \\ \mathbf{B}(\mathbf{M}1)(\mathbf{W}.\mathbf{u}.) = 0.0010 \ 9 \\ \alpha(\mathbf{K}) = 0.1707 \ 24; \ \alpha(\mathbf{L}) = 0.0277 \ 4; \ \alpha(\mathbf{M}) = 0.00640 \ 9; \ \alpha(\mathbf{N}+) = 0.00189 \ 3 \end{array}$                                                                                                                                                                                      |

10

|                        | Adopted Levels, Gammas (continued) |                        |                          |          |                      |                    |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|------------------------|------------------------------------|------------------------|--------------------------|----------|----------------------|--------------------|----------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                        |                                    |                        |                          |          |                      | <u>γ(</u>          | <sup>196</sup> Pt) (contin | nued)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                 | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\ddagger}$  | $E_f$    | $\mathbf{J}_f^{\pi}$ | Mult. <sup>d</sup> | $\alpha^{g}$               | $I_{(\gamma+ce)}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 1361.585               | 2+                                 | 484.707 25             | 4.7 13                   | 876.865  | 4+                   | [E2]               | 0.0267                     |                   | B(E2)(W.u.)=0.13 <i>12</i><br>$\alpha(K)=0.0196 3; \alpha(L)=0.00544 8; \alpha(M)=0.001323 19;$<br>$\alpha(N+)=0.000382 6$                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                        |                                    | 672.900 7              | 100 7                    | 688.693  | 2+                   | (M1+E2)            | 0.024 12                   |                   | $B(M1)(W.u.)=0.000332 \ B(E2)(W.u.)=0.26 \ 23 \\ \alpha(K)=0.020 \ 10; \ \alpha(L)=0.0034 \ 14; \ \alpha(M)=0.0008 \ 3; \\ \alpha(N+)=0.00023 \ 9 \\ Multiply from and K(L in 195 Br(n, x)) E, thermal$                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                        |                                    | 1005 894 20            | 80.7                     | 355 6841 | $2^{+}$              |                    |                            |                   | Mult.: from $\alpha(\mathbf{K})$ exp and $\mathbf{K}/\mathbf{L}$ in $\mathcal{D}$ Pt(n, $\gamma$ ) E=thermal.                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                        |                                    | 1361.0 <i>10</i>       | 18 3                     | 0.0      | $\tilde{0}^{+}$      | [E2]               | 0.00305                    |                   | B(E2)(W.u.)=0.0025 24<br>$\alpha$ (K)=0.00249 4; $\alpha$ (L)=0.000410 6; $\alpha$ (M)=9.48×10 <sup>-5</sup> 14;<br>$\alpha$ (N+)=5.61×10 <sup>-5</sup> 8<br>E <sub>2</sub> : from <sup>196</sup> Au $\varepsilon$ decay.                                                                                                                                                                                                                                                                                                                                  |  |  |
| 1373.60                | 7-                                 | 103.3 2                | 100 <sup>@</sup>         | 1270.214 | 5-                   | E2                 | 4.28 7                     |                   | $\alpha(K)=0.685 \ 10; \ \alpha(L)=2.70 \ 5; \ \alpha(M)=0.699 \ 12; \ \alpha(N+)=0.197 \ 4$<br>B(E2)(Wu)=25.9 \ 13                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 1402.727               | 0+                                 | 714.041 20             | <2.4 <sup><i>a</i></sup> | 688.693  | 2+                   | [E2]               | 0.01095                    |                   | B(E2)(W.u.)=25.5 15<br>B(E2)(W.u.)<0.41<br>$\alpha(K)=0.00858\ 12;\ \alpha(L)=0.00181\ 3;\ \alpha(M)=0.000430\ 6;\ \alpha(N+)=0.0001250\ 18$                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                        |                                    | 1047.044 20            | 100 7                    | 355.6841 | 2+                   | (E2)               | 0.00500                    |                   | B(E2)(W.u.)<5.0<br>$\alpha$ (K)=0.00406 6; $\alpha$ (L)=0.000720 10; $\alpha$ (M)=0.0001681 24;<br>$\alpha$ (N+ )=4.92×10 <sup>-5</sup> 7                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                        |                                    | 1402.7 7               |                          | 0.0      | 0+                   | EO                 |                            | 1.36 16           | ce(K)=26.9 11 (1982Ka28).<br>ce(K): I $\varepsilon$ is given for per 1000 capture events where it is<br>assumed that 80% of capture events populate the 2(1) <sup>+</sup> state.<br>ce(K)=0.90% for E0 branch, relative to the total depopulating<br>intensity from 1403-keV level (1982Ka28).<br>I <sub>(<math>\gamma</math>+ce)</sub> : I $\varepsilon$ : From Ice(K)/ $\Sigma$ I $\gamma$ =0.90 (1982Ka28), $\Sigma$<br>I $\gamma$ /I $\gamma$ (1047 $\gamma$ )=1.024.<br>X(E0)=B(E0)[O+ to 0+(0)]/B(E2)[O <sup>+</sup> to 2+(356)]=0.092<br>(1982Ka28) |  |  |
| 1429.74?               | (5 <sup>-</sup> ,6 <sup>+</sup> )  | 553.0 <i>3</i>         | 100                      | 876.865  | 4+                   | [E2]               | 0.0194                     |                   | $\alpha(K)=0.01465\ 21;\ \alpha(L)=0.00366\ 6;\ \alpha(M)=0.000882\ 13;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 1447.043               | 3-                                 | 176.830 <i>3</i>       | 8.7 23                   | 1270.214 | 5-                   | [E2]               | 0.551                      |                   | $\alpha(N+)=0.0002354$<br>B(E2)(W.u.)=4.1 <i>16</i><br>$\alpha(K)=0.2314; \alpha(L)=0.2414; \alpha(M)=0.06179; \alpha(N+)=0.01749$<br>25                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                        |                                    | 431.982 24             | 8.7 13                   | 1015.044 | 3+                   | [E1,M2]            | 0.19 18                    |                   | $B(E1)(W.u.)=1.1\times10^{-7} 4; B(M2)(W.u.)=2.6 9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                        |                                    | 570.203 18             | 4.7 13                   | 876.865  | 4+                   | (E1+M2)            | 0.08 8                     |                   | $\alpha(K)=0.15$ 17, $\alpha(L)=0.05$ 3, $\alpha(M)=0.007$ 7, $\alpha(N+)=0.0021$ 21<br>$\alpha(K)=0.07$ 7; $\alpha(L)=0.013$ 13<br>B(E1)(W.u.)=(2.5×10 <sup>-8</sup> 10); B(M2)(W.u.)=(0.36 14)<br>Mult.: $\alpha(K)$ exp=0.016 6 consistent with E1+M2 or M1+E2. The<br>decay scheme requires $\Delta \pi$ =ves $\alpha(K)$ exp gives $\delta = 0.31 \pm 0 = 11$                                                                                                                                                                                         |  |  |
|                        |                                    | 758.358 10             | 20 7                     | 688.693  | 2+                   | E1                 | 0.00356                    |                   | B(E1)(W.u.)=9.E-8 4<br>$\alpha$ (K)=0.00298 5; $\alpha$ (L)=0.000445 7; $\alpha$ (M)=0.0001016 15;<br>$\alpha$ (N+)=2.98×10 <sup>-5</sup> 5                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |

From ENSDF

 $^{196}_{78}\text{Pt}_{118}\text{--}11$ 

# $\gamma$ (<sup>196</sup>Pt) (continued)

| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | ${\rm E_{\gamma}}^{\dagger}$         | $I_{\gamma}^{\ddagger}$     | $E_f$                | $J_f^{\pi}$    | Mult. <sup>d</sup>  | $\alpha^{g}$                       | Comments                                                                                                                                                                                                                                                                                                                 |
|------------------------|----------------------|--------------------------------------|-----------------------------|----------------------|----------------|---------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1447.043               | 3-                   | 1091.331 17                          | 100 7                       | 355.6841             | 2+             | E1                  | 0.00181                            | Measured prompt nonyrast $\gamma$ production cross sections in <sup>196</sup> Pt reaction<br>with 1-250 MeV spallation neutrons (2001Ta31).<br>B(E1)(W.u.)=1.5×10 <sup>-7</sup> 5<br>$\alpha$ (K)=0.001521 22; $\alpha$ (L)=0.000222 4; $\alpha$ (M)=5.06×10 <sup>-5</sup> 7;<br>$\alpha$ (N+)=1.486×10 <sup>-5</sup> 21 |
|                        |                      | 1446.84 <sup><i>i</i></sup> 12       | 15 <sup>i</sup> 3           | 0.0                  | 0+             | [E3]                | 0.00554                            | Measured prompt nonyrast $\gamma$ production cross sections in <sup>196</sup> Pt reaction<br>with 1-250 MeV spallation neutrons (2001Ta31).<br>B(E3)(W.u.)=5.9 21<br>$\alpha$ (K)=0.00441 7; $\alpha$ (L)=0.000849 12; $\alpha$ (M)=0.000200 3;<br>$\alpha$ (N+)=7.99×10 <sup>-5</sup> 12                                |
| 1525.8                 | 6+                   | 649.3 7                              | 100 <sup>b</sup>            | 876.865              | 4+             | [E2]                | 0.01348                            | α: E3 α(theory)'s mult. By 0.975 10 (Cf. 1990Ne01).<br>α(K)=0.01043 15; α(L)=0.00233 4; α(M)=0.000556 8;<br>α(N+)=0.0001614 24<br>B(E2)(W.u.)=73 +4-73<br>Mult : from Coulomb excitation                                                                                                                                 |
| 1535.8                 | 4+                   | 521 /                                | 100 <sup>b</sup> 7          | 1015.044             | 3+             | [M1.E2]             | 0.046 24                           | $\alpha(K)=0.037\ 21;\ \alpha(L)=0.0068\ 25;\ \alpha(M)=0.0016\ 6;\ \alpha(N+)=0.00047\ 17$                                                                                                                                                                                                                              |
|                        |                      | 847 1                                | 0.18 <sup>b</sup> 7         | 688.693              | 2+             | [E2]                | 0.00765                            | $\alpha(K)=0.00611$ 9; $\alpha(L)=0.001178$ 17; $\alpha(M)=0.000278$ 4;<br>$\alpha(N+)=8.10\times10^{-5}$ 12                                                                                                                                                                                                             |
|                        |                      | 1180 <i>I</i>                        | 0.22 <sup>b</sup> 9         | 355.6841             | 2+             | [E2]                | 0.00397                            | $\alpha$ (K)=0.00325 5; $\alpha$ (L)=0.000554 8; $\alpha$ (M)=0.0001288 19;<br>$\alpha$ (N+)=4.04×10 <sup>-5</sup> 6                                                                                                                                                                                                     |
| 1604.494               | 2+                   | 201.769 6                            | 4 1                         | 1402.727             | $0^{+}$        | (E2)                | 0.349                              | $\alpha(K)=0.1662\ 24;\ \alpha(L)=0.1375\ 20;\ \alpha(M)=0.0351\ 5;\ \alpha(N+)=0.00995\ 14$<br>Mult : from K/L in <sup>195</sup> Pt(n $\chi$ ) E=thermal                                                                                                                                                                |
|                        |                      | 589.434 20                           | 4 2                         | 1015.044             | 3+             | [M1,E2]             | 0.034 17                           | $\alpha(K)=0.027 \ 15; \ \alpha(L)=0.0049 \ 19; \ \alpha(M)=0.0011 \ 4; \ \alpha(N+)=0.00033 \ 13$                                                                                                                                                                                                                       |
|                        |                      | 727.581 23                           | 44 9                        | 876.865              | 4+             | (E2)                | 0.01051                            | $\alpha(K)=0.00826\ I2;\ \alpha(L)=0.001722\ 25;\ \alpha(M)=0.000409\ 6;$<br>$\alpha(N+)=0.0001190\ I7$<br>Mult : from $\alpha(K)$ in <sup>195</sup> Dt(n c) E-thermal                                                                                                                                                   |
|                        |                      | 915.80 6<br>1248.84 <i>3</i>         | 40 <i>4</i><br>100 <i>9</i> | 688.693<br>355.6841  | 2+<br>2+       | [M1,E2]<br>E0+M1+E2 | 0.011 <i>5</i><br>0.0055 <i>20</i> | $\alpha(K)=0.009 \ 5; \ \alpha(L)=0.0016 \ 6; \ \alpha(M)=0.00036 \ 14; \ \alpha(N+)=0.00011 \ 4 \\ \alpha(K)\exp=0.058 \ 5 \ (1982Ka28) \\ \alpha(K)=0.0046 \ 17; \ \alpha(L)=0.00073 \ 24; \ \alpha(M)=0.00017 \ 6; \\ \alpha(N+)=6.2\times10^{-5} \ 19$                                                               |
|                        |                      | 1604.3 <i>3</i>                      | 20 4                        | 0.0                  | $0^{+}$        | [E2]                | 0.00233                            | ce(K): Relative to 1249 $\gamma$ intensity as 100 from 1982Ka28.<br>Mult.: from $\alpha$ (K)exp in <sup>195</sup> Pt(n, $\gamma$ ) E=thermal.<br>$\alpha$ (K)=0.00185 3; $\alpha$ (L)=0.000294 5; $\alpha$ (M)=6.76×10 <sup>-5</sup> 10;                                                                                 |
| 1609 74                | $(5^{+})$            | 59472                                | 100&                        | 1015 044             | 3+             | [F2]                | 0.01643                            | $\alpha(N+)=0.0001218 \ I7$<br>$\alpha(K)=0.01254 \ I8: \alpha(I)=0.00297 \ 5: \alpha(M)=0.000713 \ I0:$                                                                                                                                                                                                                 |
| 1009.71                | (5)                  | 591.72                               | 100                         | 1015.011             | 5              |                     | 0.01015                            | $\alpha(N+)=0.000207 3$                                                                                                                                                                                                                                                                                                  |
| 1677.256               | 2+                   | 315.58 <i>8</i><br>541.942 <i>20</i> | 3 <i>1</i><br>5 <i>1</i>    | 1361.585<br>1135.312 | $2^+$<br>$0^+$ | [M1,E2]<br>[E2]     | 0.18 <i>9</i><br>0.0204            | $\alpha(K)=0.14 \ 9; \ \alpha(L)=0.030 \ 7; \ \alpha(M)=0.0071 \ 12; \ \alpha(N+)=0.0021 \ 4 \\ \alpha(K)=0.01531 \ 22; \ \alpha(L)=0.00388 \ 6; \ \alpha(M)=0.000937 \ 14; \\ \alpha(N+)=0.000071 \ 4$                                                                                                                  |
|                        |                      | 662.188 16                           | 13 <i>3</i>                 | 1015.044             | 3+             | [M1.E2]             | 0.025 13                           | $\alpha(N+)=0.0002/14$<br>$\alpha(K)=0.021/11; \alpha(L)=0.0036/14; \alpha(M)=0.0008/3; \alpha(N+)=0.00024/10$                                                                                                                                                                                                           |
|                        |                      | 800.38 5                             | 51                          | 876.865              | 4+             | [E2]                | 0.00860                            | $\alpha(\text{K})=0.00683 \ 10; \ \alpha(\text{L})=0.001353 \ 19; \ \alpha(\text{M})=0.000320 \ 5; \ \alpha(\text{N}+)=9.32\times10^{-5} \ 13$                                                                                                                                                                           |

12

|                        |                                  |                                   |                         |                            |                         | Adopted Lev        | vels, Gammas               | (continu          | ued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------|----------------------------------|-----------------------------------|-------------------------|----------------------------|-------------------------|--------------------|----------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                  |                                   |                         |                            |                         | $\gamma(1)$        | <sup>96</sup> Pt) (continu | ed)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$               | $E_{\gamma}^{\dagger}$            | $I_{\gamma}^{\ddagger}$ | $\mathbf{E}_{f}$           | $\mathbf{J}_f^{\pi}$    | Mult. <sup>d</sup> | $\alpha^{g}$               | $I_{(\gamma+ce)}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1677.256               | 2+                               | 988.54 7                          | 21 3                    | 688.693                    | 2+                      | E0+M1+E2           | 0.010 4                    |                   | $\alpha$ (K)exp=0.089 <i>11</i> (1982Ka28); ce(K)=1.6 <i>3</i><br>$\alpha$ (K)=0.008 <i>4</i> ; $\alpha$ (L)=0.0013 <i>5</i> ; $\alpha$ (M)=0.00030 <i>11</i> ;<br>$\alpha$ (N+)=9.E-5 <i>4</i><br>ce(K): Relative to 1678 $\gamma$ intensity as 100 from 1982Ka28.<br>$\alpha$ (K)(E2)=0.0046; $\alpha$ (K)(M1)=0.015.<br>Mult.: from $\alpha$ (K)exp in <sup>195</sup> Pt(n, $\gamma$ ) E=thermal. E0 violates<br>the O(6) solution rules for het $\sigma$ and $\sigma$ (1082Ka28). |
|                        |                                  | 1321.74 4                         | 60 20                   | 355.6841                   | 2+                      | [M1,E2]            | 0.0049 17                  |                   | $\alpha(K)=0.0040 \ 14; \ \alpha(L)=0.00064 \ 21; \ \alpha(M)=0.00015 \ 5; \ \alpha(N+)=6.9\times10^{-5} \ 20$                                                                                                                                                                                                                                                                                                                                                                        |
|                        |                                  | 1677.5 2                          | 100 13                  | 0.0                        | $0^+$                   | [E2]               | 0.00218                    |                   | $\alpha$ (K)=0.001702 24; $\alpha$ (L)=0.000269 4; $\alpha$ (M)=6.18×10 <sup>-5</sup> 9; $\alpha$ (N+)=0.0001481 21                                                                                                                                                                                                                                                                                                                                                                   |
| 1679.81                | (6 <sup>-</sup> )                | 409.6 2                           | 100 <mark>&amp;</mark>  | 1270.214                   | 5-                      | [M1,E2]            | 0.09 5                     |                   | $\alpha$ (K)=0.07 5; $\alpha$ (L)=0.014 5; $\alpha$ (M)=0.0033 10; $\alpha$ (N+)=0.0010 3                                                                                                                                                                                                                                                                                                                                                                                             |
| 1754.655               | 3-,4+                            | 307.616 9                         | 73 14                   | 1447.043                   | 3-                      | [M1,E2]            | 0.19 10                    |                   | $\alpha(K)=0.15\ 9;\ \alpha(L)=0.032\ 7;\ \alpha(M)=0.0077\ 13;\ \alpha(N+)=0.0022\ 4$                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |                                  | 484.438 11                        | 100 32                  | 1270.214                   | 5-                      | [M1,E2]            | 0.06 3                     |                   | $\alpha(K)=0.05 \ 3; \ \alpha(L)=0.009 \ 4; \ \alpha(M)=0.0020 \ 7; \ \alpha(N+)=0.00063 \ 22$                                                                                                                                                                                                                                                                                                                                                                                        |
|                        |                                  | 877.77 3                          | 86 14                   | 876.865                    | 4+                      | [E1,M2]            | 0.024 22                   |                   | $\alpha(K)=0.020 \ 18; \ \alpha(L)=0.003 \ 4; \ \alpha(M)=0.0008 \ 8; \ \alpha(N+)=0.00024 \ 22$                                                                                                                                                                                                                                                                                                                                                                                      |
| 1795.09                | 2+,(1-)                          | 1106.6 2<br>1439.38 6<br>1795.0 3 | 40 7<br>100 8<br>25 6   | 688.693<br>355.6841<br>0.0 | $2^+$<br>$2^+$<br>$0^+$ |                    |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1802.302               | 1+,2+                            | 440.709 9                         | 3 2                     | 1361.585                   | 2+                      | [M1,E2]            | 0.07 4                     |                   | $\alpha(K)=0.06$ 4; $\alpha(L)=0.011$ 4; $\alpha(M)=0.0026$ 9; $\alpha(N+)=0.0008$                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        |                                  | 666.99 <i>3</i>                   | 2 1                     | 1135.312                   | $0^{+}$                 |                    |                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        |                                  | 1113.72 4                         | 19 3                    | 688.693                    | 2+                      | [M1,E2]            | 0.007 3                    |                   | $\alpha(K)=0.006 \ 3; \ \alpha(L)=0.0010 \ 4$                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                        |                                  | 1446.84 <sup>1</sup> 12           | 12 <sup>1</sup> 3       | 355.6841                   | 2+                      | [M1,E2]            | 0.0040 13                  |                   | $\alpha(K)=0.0033 \ 11; \ \alpha(L)=0.00052 \ 16; \ \alpha(M)=0.00012 \ 4; \ \alpha(N+)=9.9\times10^{-5} \ 24$                                                                                                                                                                                                                                                                                                                                                                        |
| 1804.80                | (3 <sup>+</sup> ),4 <sup>+</sup> | 1802.3 2<br>443.21 <i>10</i>      | 100 8<br>100            | 0.0<br>1361.585            | $0^+$<br>$2^+$          | E2                 | 0.0335                     |                   | $\alpha$ (K)=0.0240 4; $\alpha$ (L)=0.00722 11; $\alpha$ (M)=0.001767 25;                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1820.69                | 9-                               | 447.1 2                           | 100 <sup>@</sup>        | 1373.60                    | 7-                      | E2                 | 0.0327                     |                   | $\alpha$ (N+)=0.000509 8<br>B(E2)(W.u.)>0.45<br>$\alpha$ (K)=0.0235 4; $\alpha$ (L)=0.00702 10; $\alpha$ (M)=0.001717 25;                                                                                                                                                                                                                                                                                                                                                             |
| 1823.23                | 0+                               | 1134.55 8                         | < 0.8 <sup>a</sup>      | 688.693                    | 2+                      | [E2]               | 0.00428                    |                   | $\alpha$ (N+)=0.000495 7<br>$\alpha$ (K)=0.00349 5; $\alpha$ (L)=0.000604 9; $\alpha$ (M)=0.0001404 20;                                                                                                                                                                                                                                                                                                                                                                               |
|                        |                                  | 1467.53 8                         | 100 10                  | 355.6841                   | 2+                      | [E2]               | 0.00268                    |                   | $\alpha(N+)=4.18\times10^{-5} 6$<br>$\alpha(K)=0.00217 3; \alpha(L)=0.000351 5; \alpha(M)=8.11\times10^{-5} 12;$                                                                                                                                                                                                                                                                                                                                                                      |
|                        |                                  | 1823.2 4                          |                         | 0.0                        | 0+                      | EO                 |                            | <0.11             | <ul> <li>α(N+)=8.01×10<sup>-5</sup> 12</li> <li>ce(K)&lt;0.6 (1982Ka28).</li> <li>ce(K): Iε is given for 1000 capture events where it is assumed that 80% of capture events populate the 2(1)<sup>+</sup> state. ce(K)&lt;0.08% for E0 branch, relative to the total depopulating intensity from 1823-keV level (1982Ka28).</li> </ul>                                                                                                                                                |

L

|                        |                      |                              |                         |                      |                         | s (continued)      |                            |                                                                                                                                                                                                                                     |
|------------------------|----------------------|------------------------------|-------------------------|----------------------|-------------------------|--------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                      |                              |                         |                      |                         | $\gamma(1)$        | <sup>96</sup> Pt) (continu | ned)                                                                                                                                                                                                                                |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$       | $I_{\gamma}^{\ddagger}$ | $\mathbf{E}_{f}$     | $\mathbf{J}_{f}^{\pi}$  | Mult. <sup>d</sup> | $\alpha^{g}$               | Comments                                                                                                                                                                                                                            |
| 1825.715               | 2+                   | 378.675 14                   | 22 3                    | 1447.043             | 3-                      | [E1]               | 0.01520                    | $X(E0)=B(E0)(0^{+} to 0+(0))/B(E2)(0^{+} to 2+(356))<0.03 (1982Ka28).$<br>$\alpha(K)=0.01262 \ 18; \ \alpha(L)=0.00199 \ 3; \ \alpha(M)=0.000458 \ 7;$<br>$\alpha(N+)=0.0001333 \ 19$                                               |
|                        |                      | 423.00 <i>3</i><br>464 126 9 | 91<br>429               | 1402.727<br>1361 585 | $0^+$<br>2 <sup>+</sup> | [E2]               | 0.0378                     | $\alpha(K)=0.0267 4; \alpha(L)=0.00841 12; \alpha(M)=0.00206 3; \alpha(N+)=0.000594 9$                                                                                                                                              |
|                        |                      | 690.403 12                   | 17 3                    | 1135.312             | $\frac{1}{0^{+}}$       | [E2]               | 0.01177                    | $\alpha(K)=0.00919 \ 13; \ \alpha(L)=0.00197 \ 3; \ \alpha(M)=0.000470 \ 7; \ \alpha(N+_{*})=0.0001367 \ 20$                                                                                                                        |
|                        |                      | 1137.01 <i>3</i>             | 32 10                   | 688.693              | $2^{+}$                 |                    |                            |                                                                                                                                                                                                                                     |
|                        |                      | 1826.0 2                     | 100 8                   | 0.0                  | $0^+$                   | [E2]               | 0.00195                    | $\alpha$ (K)=0.001459 21; $\alpha$ (L)=0.000227 4; $\alpha$ (M)=5.22×10 <sup>-5</sup> 8; $\alpha$ (N+)=0.000207 3                                                                                                                   |
| 1831.99                | 3+                   | 816.94 14                    | 100 3                   | 1015.044             | 3+                      | M1+E2 <sup>e</sup> | 0.015 7                    | $\alpha(K)=0.012$ 6; $\alpha(L)=0.0021$ 8; $\alpha(M)=0.00048$ 18; $\alpha(N+)=0.00014$ 6                                                                                                                                           |
|                        |                      | 955.5 5                      | 72                      | 876.865              | 4+                      | M1+E2 <sup>e</sup> | 0.010 5                    | $\alpha$ (K)=0.009 4; $\alpha$ (L)=0.0014 6; $\alpha$ (M)=0.00032 12; $\alpha$ (N+)=0.00010 4                                                                                                                                       |
|                        |                      | 1143.2 <i>3</i>              | 32 <i>3</i>             | 688.693              | $2^{+}$                 | M1+E2 <sup>e</sup> | 0.007 3                    | $\alpha$ (K)=0.0056 22; $\alpha$ (L)=0.0009 4; $\alpha$ (M)=0.00021 7; $\alpha$ (N+)=6.3×10 <sup>-5</sup> 22                                                                                                                        |
|                        |                      | 1476.01                      |                         | 355.6841             | $2^{+}$                 | M1+E2 <sup>e</sup> | 0.0038 12                  | $\alpha$ (K)=0.0031 10; $\alpha$ (L)=0.00049 15; $\alpha$ (M)=0.00011 4; $\alpha$ (N+)=0.00011 3                                                                                                                                    |
| 1847.348               | $2^{+}$              | 242.858 17                   | 1.1 5                   | 1604.494             | $2^{+}$                 | [M1,E2]            | 0.37 18                    | $\alpha$ (K)=0.28 18; $\alpha$ (L)=0.069 5; $\alpha$ (M)=0.0166 5; $\alpha$ (N+)=0.00482 21                                                                                                                                         |
|                        |                      | 1158.82 <i>13</i>            | 51                      | 688.693              | $2^{+}$                 | E0+M1+E2           | 0.0066 25                  | $\alpha$ (K)exp<0.02 (1982Ka28); ce(K) $\leq$ 0.06                                                                                                                                                                                  |
|                        |                      |                              |                         |                      |                         |                    |                            | $\alpha(K)=0.0054\ 21;\ \alpha(L)=0.0009\ 3;\ \alpha(M)=0.00020\ 7;\ \alpha(N+)=6.1\times10^{-5}\ 21$<br>ce(K): Relative to 1492 $\gamma$ intensity as 100 from 1982Ka28.<br>Mult.: from <sup>195</sup> Pt(n, $\gamma$ ) E=thermal. |
|                        |                      | 1491.60 4                    | 100 9                   | 355.6841             | $2^{+}$                 | [M1,E2]            | 0.0038 12                  | $\alpha(K)=0.0030 \ 10; \ \alpha(L)=0.00048 \ 14; \ \alpha(M)=0.00011 \ 4; \ \alpha(N+)=0.00011 \ 3$                                                                                                                                |
| 1853.659               | 2+                   | 560.354 10                   | 9.6 24                  | 1293.308             | 4+                      | [E2]               | 0.0189                     | $\alpha(\mathbf{K})=0.01424\ 20;\ \alpha(\mathbf{L})=0.00352\ 5;\ \alpha(\mathbf{M})=0.000848\ 12;\ \alpha(\mathbf{N}+)=0.000246\ 4$                                                                                                |
|                        |                      | 1497.85 6                    | 100 9                   | 355.6841             | $2^{+}$                 | [M1,E2]            | 0.0037 12                  | $\alpha$ (K)=0.0030 10; $\alpha$ (L)=0.00048 14; $\alpha$ (M)=0.00011 4; $\alpha$ (N+)=0.00012 3                                                                                                                                    |
|                        |                      | 1853.6 <i>3</i>              | 20 3                    | 0.0                  | $0^+$                   | [E2]               | 0.00191                    | $\alpha$ (K)=0.001420 20; $\alpha$ (L)=0.000221 3; $\alpha$ (M)=5.07×10 <sup>-5</sup> 8; $\alpha$ (N+)=0.000219 3                                                                                                                   |
| 1883.34                | 3+,4+                | 589.99 11                    | 100.2                   | 1293.308             | 4 <sup>+</sup>          | M1+E2 <sup>e</sup> | 0.034 17                   | $\alpha(K)=0.027$ 15; $\alpha(L)=0.0049$ 19; $\alpha(M)=0.0011$ 4; $\alpha(N+)=0.00033$ 13                                                                                                                                          |
|                        |                      | 868.22 19                    | 100 2                   | 1015.044             | 3                       |                    | 0.0051.00                  |                                                                                                                                                                                                                                     |
|                        |                      | 1195.0 2<br>1527.56          | 47.2                    | 688.693<br>355.6841  | $2^+$<br>$2^+$          | M1+E2 <sup>e</sup> | 0.0061 23                  | $\alpha(K)=0.0051$ 19; $\alpha(L)=0.0008$ 3; $\alpha(M)=0.00019$ 7; $\alpha(N+)=6.0\times10^{-5}$ 20                                                                                                                                |
| 1888.139               | 1+,2+                | 526.58 <i>3</i>              | 2.6 7                   | 1361.585             | 2+                      | [M1,E2]            | 0.045 24                   | B(M1)(W.u.)=0.0006 4; B(E2)(W.u.)=0.8 6<br>$\alpha$ (K)=0.036 20; $\alpha$ (L)=0.0066 25; $\alpha$ (M)=0.0016 6; $\alpha$ (N+)=0.00046 16                                                                                           |
|                        |                      | 752.823 14                   | 13 2                    | 1135.312             | $0^+$                   |                    |                            |                                                                                                                                                                                                                                     |
|                        |                      | 1199.50 4                    | 66 13                   | 688.693              | 2+                      | [M1,E2]            | 0.0061 23                  | B(M1)(W.u.)=0.0013 9; B(E2)(W.u.)=0.34 22<br>$\alpha$ (K)=0.0050 19; $\alpha$ (L)=0.0008 3; $\alpha$ (M)=0.00019 7; $\alpha$ (N+)=6.0×10 <sup>-5</sup> 20                                                                           |
|                        |                      | 1532.30 <sup>i</sup> 5       | 72 <sup>i</sup> 20      | 355.6841             | 2+                      | [M1,E2]            | 0.0036 11                  | B(M1)(W.u.)=0.0007 5; B(E2)(W.u.)=0.11 8<br>$\alpha(K)=0.0029$ 9; $\alpha(L)=0.00045$ 13; $\alpha(M)=0.00010$ 3; $\alpha(N+)=0.00013$ 3                                                                                             |
|                        |                      | 1888.4 2                     | 100 8                   | 0.0                  | $0^{+}$                 |                    |                            | ( , · · · , · ( , · · · · · · · , · ( · · · ·                                                                                                                                                                                       |
| 1901 7                 | $(8^{-})$            | 528 1 2                      | 100&                    | 1373 60              | 7-                      | [M1 E2]            | 0.045.23                   | $\alpha(K) = 0.036.20; \alpha(L) = 0.0066.24; \alpha(M) = 0.0015.6; \alpha(N+1) = 0.00045.16$                                                                                                                                       |
| 1901.89                | 567                  | 631 68 10                    | 100                     | 1270 214             | ,<br>5-                 | [1711,122]         | 0.045 25                   | $u(\mathbf{x}) = 0.050 \ 20, \ u(\mathbf{z}) = 0.0000 \ 2\tau, \ u(\mathbf{x}) = 0.0015 \ 0, \ u(\mathbf{x} +) = 0.00045 \ 10$                                                                                                      |
| 1918.54                | $0^+$                | 1229.65 13                   | 18 4                    | 688.693              | $2^{+}$                 | [E2]               | 0.00367                    | $\alpha(K)=0.00301\ 5;\ \alpha(L)=0.000508\ 8;\ \alpha(M)=0.0001177\ 17;$<br>$\alpha(N+)=4\ 17\times10^{-5}\ 6$                                                                                                                     |
|                        |                      | 1562.85 5                    | 100 10                  | 355.6841             | 2+                      | [E2]               | 0.00242                    | $\alpha(K)=0.00194 \ 3; \ \alpha(L)=0.000310 \ 5; \ \alpha(M)=7.13\times10^{-5} \ 10; \ \alpha(N+)=0.0001080 \ 16$                                                                                                                  |

Т

|                                |                                                                                                                           |                                                                                                  |                                               |                                                         | A                                         | dopted Leve        | ls, Gammas (o         | continued)        | )                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------|-------------------------------------------|--------------------|-----------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                |                                                                                                                           |                                                                                                  |                                               |                                                         |                                           | $\gamma(^{196}$    | Pt) (continued        | )                 |                                                                                                                                                                                                                                                                                                                                                                                         |
| E <sub>i</sub> (level)         | $\mathbf{J}_i^{\pi}$                                                                                                      | $E_{\gamma}^{\dagger}$                                                                           | $I_{\gamma}$ ‡                                | $E_f$                                                   | $\mathbf{J}_f^{\pi}$                      | Mult. <sup>d</sup> | $\alpha^{g}$          | $I_{(\gamma+ce)}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                |
| 1918.54                        | 0+                                                                                                                        | 1918.5 8                                                                                         |                                               | 0.0                                                     | 0+                                        | EO                 |                       | 0.16 3            | ce(K)=1.4 2 (1982Ka28).<br>ce(K): I $\epsilon$ is given for 1000 capture events where it<br>is assumed that 80% of capture events populate the<br>2(1) <sup>+</sup> state. ce(K)=0.088% for E0 branch, relative<br>to the total depopulating intensity from 1919-keV<br>level (1982Ka28).<br>X(E0)=B(E0)[0 <sup>+</sup> to 0+(0)]/B(E2)[0 <sup>+</sup> to<br>2+(356)]=0.060 (1982Ka28). |
| 1932.01<br>1957.25<br>1968.906 | 0 <sup>+</sup> ,1 <sup>+</sup> ,2 <sup>+</sup><br>(4),5 <sup>+</sup> ,6 <sup>+</sup><br>1 <sup>+</sup> ,(2 <sup>+</sup> ) | 1576.32 <i>11</i><br>1080.39 <i>20</i><br>566.174 <i>8</i><br>833.58 <i>5</i><br>1613.1 <i>3</i> | 100<br>100<br>23 6<br>31 3<br>14 3            | 355.6841<br>876.865<br>1402.727<br>1135.312<br>355.6841 | $2^+$<br>$4^+$<br>$0^+$<br>$2^+$<br>$2^+$ |                    |                       |                   | $B(E2)\downarrow=0.49~6~(2002Ta14)$                                                                                                                                                                                                                                                                                                                                                     |
| 1984.93                        | 1+,2+                                                                                                                     | 623.34 <i>5</i>                                                                                  | 100 13<br>100 17                              | 0.0<br>1361.585                                         | $2^+$                                     | [M1,E2]            | 0.029 15              |                   | $\alpha$ (K)=0.024 <i>13</i> ; $\alpha$ (L)=0.0042 <i>16</i> ; $\alpha$ (M)=0.0010 <i>4</i> ; $\alpha$ (N+)=0.00029 <i>11</i>                                                                                                                                                                                                                                                           |
|                                |                                                                                                                           | 849.74 <i><sup>j</sup> 9</i><br>969.94 <i>12</i><br>1296.6 <i>3</i>                              | 58 <i>17</i><br>67 <i>17</i><br>100 <i>15</i> | 1135.312<br>1015.044<br>688.693                         | $0^+$<br>$3^+$<br>$2^+$                   |                    |                       |                   |                                                                                                                                                                                                                                                                                                                                                                                         |
| 1988.218                       | 1+,2+                                                                                                                     | 541.174 7<br>626.636 <i>18</i><br>1632.4 2                                                       | 35 8<br>14 2<br>100 8                         | 1447.043<br>1361.585<br>355.6841                        | 3-<br>2+<br>2+                            |                    |                       |                   |                                                                                                                                                                                                                                                                                                                                                                                         |
| 1991.7                         | 3,4+                                                                                                                      | 1303.0 4                                                                                         | 100                                           | 688.693                                                 | 2+                                        |                    |                       |                   |                                                                                                                                                                                                                                                                                                                                                                                         |
| 1998.96                        | 2+                                                                                                                        | 705.65 4                                                                                         | 13 <i>3</i>                                   | 1293.308                                                | 4+                                        | [E2]               | 0.01123               |                   | $\alpha$ (K)=0.00879 <i>13</i> ; $\alpha$ (L)=0.00186 <i>3</i> ; $\alpha$ (M)=0.000443<br><i>7</i> ; $\alpha$ (N+)=0.0001289 <i>18</i>                                                                                                                                                                                                                                                  |
|                                |                                                                                                                           | 1643.4 2                                                                                         | 100 8                                         | 355.6841                                                | 2+                                        | [M1,E2]            | 0.0031 9              |                   | $\alpha(K)=0.0025$ 7; $\alpha(L)=0.00038$ 11; $\alpha(M)=8.8\times10^{-5}$                                                                                                                                                                                                                                                                                                              |
|                                |                                                                                                                           | 1999.3 4                                                                                         | 42 13                                         | 0.0                                                     | $0^+$                                     | [E2]               | $1.76 \times 10^{-3}$ |                   | $\alpha(K)=0.001238 \ I8; \ \alpha(L)=0.000191 \ 3; \ \alpha(M)=4.37\times10^{-5} \ 7; \ \alpha(N+)=0.000282 \ 4$                                                                                                                                                                                                                                                                       |
| 2002.36                        | (3 <sup>+</sup> ),4 <sup>+</sup>                                                                                          | 1125.5 2                                                                                         | 100                                           | 876.865                                                 | 4+                                        | M1+E2 <sup>e</sup> | 0.007 3               |                   | $\alpha(K)=0.0058\ 23;\ \alpha(L)=0.0009\ 4;\ \alpha(M)=0.00022\ 8;$<br>$\alpha(K)=0.64\times10^{-5}\ 23$                                                                                                                                                                                                                                                                               |
| 2006                           | 4+                                                                                                                        | 735.67 9                                                                                         | 100                                           | 1270.214                                                | 5-                                        |                    |                       |                   |                                                                                                                                                                                                                                                                                                                                                                                         |
| 2007.4                         | 6+                                                                                                                        | 481.4 7                                                                                          | 9.2 <sup>b</sup> 18                           | 1525.8                                                  | 6+                                        | [E2,M1]            | 0.06 3                |                   | $\alpha(K)=0.05 \ 3; \ \alpha(L)=0.009 \ 4; \ \alpha(M)=0.0021 \ 7; \ \alpha(N+)=0.00064 \ 22 \ B(M1)(W.u.)=0.010 \ 3; \ B(E2)(W.u.)=16 \ 5 \ Mult.: \ \gamma' s to \ 6^+. \ \delta: extrapolated using a theoretical model of Greiner$                                                                                                                                                 |
|                                |                                                                                                                           | 714.0 7                                                                                          | 100 <sup>b</sup> 3                            | 1293.308                                                | 4+                                        | E2                 | 0.01095               |                   | (1966GrZX) see Coulomb excitation (1990Ma37).<br>1966GrZX: w.greiner nucl.phys. 80 417 (1966).<br>B(E2)(W.u.)=49 13<br>$\alpha(K)=0.00859$ 13; $\alpha(L)=0.00181$ 3; $\alpha(M)=0.000430$<br>7; $\alpha(N+)=0.0001250$ 18<br>Mult.: from Coulomb excitation.                                                                                                                           |

 $^{196}_{78}{\rm Pt}_{118}$ -15

L

|                        |                         |                              |                         | Ado      | pted Lev    | vels, Gamma               | s (continued) |                                                                                                                                                                                                                      |
|------------------------|-------------------------|------------------------------|-------------------------|----------|-------------|---------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                         |                              |                         |          | $\gamma(^1$ | <sup>96</sup> Pt) (contin | ued)          |                                                                                                                                                                                                                      |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$    | ${\rm E_{\gamma}}^{\dagger}$ | $I_{\gamma}^{\ddagger}$ | $E_f$    | $J_f^{\pi}$ | Mult. <sup>d</sup>        | $\alpha^{g}$  | Comments                                                                                                                                                                                                             |
| 2007.4                 | 6+                      | 1130.7 7                     | 9.8 <sup>b</sup> 12     | 876.865  | 4+          | E2                        | 0.00431       | B(E2)(W.u.)=0.48 <i>14</i><br>$\alpha$ (K)=0.00352 <i>5</i> ; $\alpha$ (L)=0.000608 <i>9</i> ; $\alpha$ (M)=0.0001414 <i>20</i> ;<br>$\alpha$ (N+)=4.20×10 <sup>-5</sup> <i>6</i><br>Mult.: from Coulomb excitation. |
| 2013.88                | 2+                      | 566.55 <sup>j</sup> 4        | 57 14                   | 1447.043 | 3-          | [E1]                      | 0.00636       | $\alpha(K)=0.00531 \ 8; \ \alpha(L)=0.000811 \ 12; \ \alpha(M)=0.000186 \ 3; \ \alpha(N+)=5.42\times10^{-5} \ 8$                                                                                                     |
|                        |                         | 1137.01 <i>3</i>             | $1.0 \times 10^2 5$     | 876.865  | 4+          | [E2]                      | 0.00426       | $\alpha(K)=0.00348 5; \alpha(L)=0.000601 9; \alpha(M)=0.0001397 20; \alpha(N+)=4.17\times10^{-5} 6$                                                                                                                  |
| 2020.8                 | 2+                      | 1014 25 <b>j</b>             |                         | 1015 044 | 2+          |                           |               |                                                                                                                                                                                                                      |
| 2029.8                 | 5                       | 1341.4 3                     | 82 7                    | 688.693  | $2^{+}$     | M1+E2 <sup>e</sup>        | 0.0047 16     | $\alpha(K)=0.0039 \ 14; \ \alpha(L)=0.00062 \ 20; \ \alpha(M)=0.00014 \ 5; \ \alpha(N+_{*})=7.3\times10^{-5} \ 20$                                                                                                   |
|                        |                         | 1672.7 7                     | 100 7                   | 355.6841 | 2+          | M1+E2 <sup>e</sup>        | 0.0030 8      | $\alpha(K)=0.0024 7; \alpha(L)=0.00037 10; \alpha(M)=8.4\times10^{-5} 23; \alpha(N+)=0.00019 4$                                                                                                                      |
| 2046.99                | 2+                      | 1031.93 8                    | 17 3                    | 1015.044 | 3+          | [M1]                      | 0.01209       | $\alpha$ (K)=0.01004 <i>14</i> ; $\alpha$ (L)=0.001578 <i>22</i> ; $\alpha$ (M)=0.000363 <i>5</i> ; $\alpha$ (N+)=0.0001070 <i>15</i>                                                                                |
|                        |                         | 1358.30 8                    | 100 9                   | 688.693  | 2+          | [M1,E2]                   | 0.0046 16     | $\alpha(K)=0.0038 \ 13; \ \alpha(L)=0.00060 \ 19; \ \alpha(M)=0.00014 \ 5; \ \alpha(N+)=7.6\times10^{-5} \ 21$                                                                                                       |
|                        |                         | 1691.7 <sup>j</sup> 2        | 33 6                    | 355.6841 | 2+          | [M1,E2]                   | 0.0029 8      | $\alpha(K)=0.0023\ 7;\ \alpha(L)=0.00036\ 10;\ \alpha(M)=8.2\times10^{-5}\ 22;\ \alpha(N+)=0.00019\ 5$                                                                                                               |
| 2067.06                | 56                      | 796.85 11                    | 100                     | 1270.214 | 5-          |                           |               |                                                                                                                                                                                                                      |
| 2069.29                | $0^+, 1^+, 2^+$         | 1713.6 2                     | 100                     | 355.6841 | 2+          |                           |               |                                                                                                                                                                                                                      |
| 2084.30                | 4-,5,6-                 | 814.09 11                    | 100                     | 1270.214 | 5-          |                           |               |                                                                                                                                                                                                                      |
| 2087.327               | 34+                     | 726.0 <sup>h</sup> 7         | 46 <sup>h</sup> 10      | 1361.585 | $2^{+}$     |                           |               |                                                                                                                                                                                                                      |
|                        | - ,                     | 817.112 20                   | 85 8                    | 1270.214 | 5-          |                           |               |                                                                                                                                                                                                                      |
|                        |                         | 1210.2 4                     | 44 10                   | 876.865  | 4+          |                           |               |                                                                                                                                                                                                                      |
|                        |                         | 1397.9 <sup>j</sup> 4        | 38 13                   | 688.693  | $2^{+}$     |                           |               |                                                                                                                                                                                                                      |
|                        |                         | 1731.9 <i>3</i>              | 100 18                  | 355.6841 | $2^{+}$     |                           |               |                                                                                                                                                                                                                      |
| 2093.0                 | $(2^{+})$               | 245.655 <sup>j</sup> 5       | 3.4 14                  | 1847.348 | $2^{+}$     |                           |               |                                                                                                                                                                                                                      |
|                        |                         | 645.95 <i>j 3</i>            | 11 3                    | 1447.043 | 3-          |                           |               |                                                                                                                                                                                                                      |
|                        |                         | $1404.6^{j}$ 2               | 29.3                    | 688,693  | 2+          |                           |               |                                                                                                                                                                                                                      |
|                        |                         | $1736.9^{j}$ 2               | 100.8                   | 355 6841 | 2+          |                           |               |                                                                                                                                                                                                                      |
| 2124.389               | 3-,4+                   | 677.34 3                     | 38 14                   | 1447.043 | 3-          |                           |               |                                                                                                                                                                                                                      |
|                        | ,                       | 854.18 <i>3</i>              | 55 10                   | 1270.214 | 5-          |                           |               |                                                                                                                                                                                                                      |
|                        |                         | 1768.9 5                     | 100 24                  | 355.6841 | 2+          |                           |               |                                                                                                                                                                                                                      |
| 2126.935               | 2+                      | 372.292 <sup>j</sup> 22      | 2.2 10                  | 1754.655 | 3-,4+       |                           |               | $\alpha(K)= 0.471; \alpha(L)= 0.1008; \alpha(M)=0.02407; \alpha(N+)=0.00753$                                                                                                                                         |
|                        |                         | 522.440 11                   | 40 11                   | 1604.494 | 2+          |                           |               |                                                                                                                                                                                                                      |
| 01(1.50                | (0= 10 11=)             | 1771.5 3                     | 100 11                  | 355.6841 | $2^+$       |                           |               |                                                                                                                                                                                                                      |
| 2161.5?                | (9,10,11 <sup>-</sup> ) | 340. / 4                     | 100                     | 1820.69  | 9           |                           |               |                                                                                                                                                                                                                      |
| 2162.70                | 2+                      | 715.3" 4                     | 8 <sup>"</sup> 2        | 1447.043 | $3^{-}$     |                           |               |                                                                                                                                                                                                                      |
|                        |                         | 14/5.9/8<br>1807 3-2         | 100 17                  | 088.693  | 2<br>2+     |                           |               |                                                                                                                                                                                                                      |
| 2170 73                | $(5) 6^{(-)}$           | 900 52 10                    | 72 9<br>100             | 1270 214 | ∠<br>5-     |                           |               |                                                                                                                                                                                                                      |
| 21/0./3                | (5),0.                  | 700.JZ 19                    | 100                     | 12/0.214 | 5           |                           |               |                                                                                                                                                                                                                      |

From ENSDF

L

|                                |                                                                                                          |                                                                            |                                                                         |                                             | Adopte                                                                               | ed Levels, G                | ammas (contin | nued)             |                                                                                                                                                                                                                                                                                              |
|--------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------|---------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                |                                                                                                          |                                                                            |                                                                         |                                             |                                                                                      | $\gamma(^{196}\text{Pt})$ ( | (continued)   |                   |                                                                                                                                                                                                                                                                                              |
| E <sub>i</sub> (level)         | $\mathbf{J}_i^{\pi}$                                                                                     | $E_{\gamma}^{\dagger}$                                                     | $I_{\gamma}$ ‡                                                          | $E_f$                                       | $J_f^{\pi}$                                                                          | Mult. <sup>d</sup>          | $\alpha^{g}$  | $I_{(\gamma+ce)}$ | Comments                                                                                                                                                                                                                                                                                     |
| 2174.43                        | 0+,2+                                                                                                    | 1485.81 <i>15</i><br>1818.6 2                                              | 100 22<br>78 17                                                         | 688.693<br>355.6841                         | 2 <sup>+</sup><br>2 <sup>+</sup>                                                     |                             |               |                   |                                                                                                                                                                                                                                                                                              |
| 2183.6                         | 1+,2+                                                                                                    | 1048.3 7<br>2183.6 <i>3</i>                                                | 48 <i>14</i><br>100 <i>13</i>                                           | 1135.312<br>0.0                             |                                                                                      |                             |               |                   |                                                                                                                                                                                                                                                                                              |
| 2199.45                        | 0+                                                                                                       | 1510.75 <i>5</i><br>2199.4 <i>8</i>                                        | 100                                                                     | 688.693<br>0.0                              | 2+<br>0+                                                                             | E0                          |               | 0.128 15          | ce(K)=1.1 2 (1982Ka28).<br>ce(K): I $\varepsilon$ is given for 1000 capture events where it is<br>assumed that 80% of capture events populate the<br>2(1) <sup>+</sup> state. ce(K)=0.085% for E0 branch, relative to<br>the total depopulating intensity from 2199-keV level<br>(1982Ka28). |
| 2204.431                       | 1+,2+                                                                                                    | 316.27 <sup><i>j</i></sup> 3<br>402.130 7<br>1069.4 2                      | 47 26<br>68 11<br>79 21                                                 | 1888.139<br>1802.302<br>1135.312            | 1 <sup>+</sup> ,2 <sup>+</sup><br>1 <sup>+</sup> ,2 <sup>+</sup><br>0 <sup>+</sup>   | [E2]                        | 0.00480       |                   | $\alpha$ (K)=0.00390 6; $\alpha$ (L)=0.000687 10;<br>$\alpha$ (M)=0.0001602 23; $\alpha$ (N+)=4.69×10 <sup>-5</sup> 7                                                                                                                                                                        |
|                                |                                                                                                          | 1515.5 <i>3</i><br>1848 7 <i>4</i>                                         | 100 32                                                                  | 688.693<br>355 6841                         | $2^+_{2^+}$                                                                          |                             |               |                   |                                                                                                                                                                                                                                                                                              |
| 2229.6                         | 2+                                                                                                       | 1353.0 <sup><i>hj</i></sup> 4                                              | 17 <sup>h</sup> 7                                                       | 876.865                                     | 4 <sup>+</sup>                                                                       | [E2]                        | 0.00308       |                   | $\alpha(K)=0.00252 \ 4; \ \alpha(L)=0.000415 \ 6; \ \alpha(M)=9.60\times10^{-5}$                                                                                                                                                                                                             |
| 2236.32<br>2244.57<br>2245.559 | (5),6 <sup>-</sup> ,7 <sup>-</sup><br>3 <sup>+</sup> ,4,5 <sup>+</sup><br>1 <sup>+</sup> ,2 <sup>+</sup> | 1873.9 <i>3</i><br>966.11 <i>21</i><br>1367.7 <i>2</i><br>443.258 <i>9</i> | 100 <i>11</i><br>100<br>100<br>14 <i>3</i>                              | 355.6841<br>1270.214<br>876.865<br>1802.302 | 2 <sup>+</sup><br>5 <sup>-</sup><br>4 <sup>+</sup><br>1 <sup>+</sup> ,2 <sup>+</sup> |                             |               |                   | <i>17</i> , <i>u</i> (1( <i>t)</i> - <i>J</i> . <i>t</i> / <i>x</i> 10 0                                                                                                                                                                                                                     |
|                                |                                                                                                          | 641.12 <sup><i>j</i></sup> 4<br>2245.8 <i>3</i>                            | 16 <i>3</i><br>100 <i>7</i>                                             | 1604.494<br>0.0                             | $2^+$<br>$0^+$                                                                       |                             |               |                   |                                                                                                                                                                                                                                                                                              |
| 2252.7                         | 8+                                                                                                       | 432 1                                                                      | 19 <sup>b</sup> 3                                                       | 1820.69                                     | 9-                                                                                   | [E1]                        | 0.01133 17    |                   | $\alpha$ (K)=0.00943 <i>14</i> ; $\alpha$ (L)=0.001471 <i>22</i> ;<br>$\alpha$ (M)=0.000337 <i>5</i> ; $\alpha$ (N+)=9.85×10 <sup>-5</sup> <i>15</i><br>B(E1)(W.u.)=0.00089 + <i>18</i> - <i>17</i>                                                                                          |
|                                |                                                                                                          | 727.4 7                                                                    | 100 <sup>b</sup> 3                                                      | 1525.8                                      | 6+                                                                                   | [E2]                        | 0.01052       |                   | $\alpha$ (K)=0.00827 <i>12</i> ; $\alpha$ (L)=0.001723 <i>25</i> ;<br>$\alpha$ (M)=0.000409 <i>6</i> ; $\alpha$ (N+)=0.0001190 <i>17</i><br>B(E2)(W.u.)=78 + <i>10</i> -78<br>Mult : from Coulomb excitation                                                                                 |
|                                |                                                                                                          | 878 1                                                                      | 5.7 <sup>b</sup> 11                                                     | 1373.60                                     | 7-                                                                                   | [E1]                        | 0.00269       |                   | $\alpha(K)=0.00226 \ 4; \ \alpha(L)=0.000335 \ 5; \ \alpha(M)=7.63\times10^{-5}$ 11; $\alpha(N+)=2.24\times10^{-5} \ 4$ $P(E1)(W_{E1})=2.24\times10^{-5} \ 4$                                                                                                                                |
| 2262.428                       | 2+                                                                                                       | 293.522 10                                                                 | 26 <sup><i>a</i></sup> 5                                                | 1968.906                                    | $1^+,(2^+)$                                                                          | [M1,E2]                     | 0.21 11       |                   | $\begin{array}{l} \alpha(\mathbf{K}) = 0.17 \ 11; \ \alpha(\mathbf{L}) = 0.037 \ 7; \ \alpha(\mathbf{M}) = 0.0089 \ 12; \\ \alpha(\mathbf{L}) = 0.026 \ 4 \end{array}$                                                                                                                       |
|                                |                                                                                                          | 1246.8 6                                                                   | 33 <sup>a</sup> 10                                                      | 1015.044                                    | 3+                                                                                   | [M1]                        | 0.00752       |                   | $\alpha(K)=0.00624 \ 9; \ \alpha(L)=0.000976 \ 14; \ \alpha(M)=0.000224$<br>$\alpha(K)=0.00624 \ 9; \ \alpha(L)=0.000976 \ 14; \ \alpha(M)=0.000224$                                                                                                                                         |
|                                |                                                                                                          | 1573.5 <i>3</i><br>1907.0 <i>6</i>                                         | $   \begin{array}{c}     100^{a} & 25 \\     21^{a} & 5   \end{array} $ | 688.693<br>355.6841                         | 2+<br>2+                                                                             |                             |               |                   | $\tau, u(1)\tau0.05 \wedge 10 = 12$                                                                                                                                                                                                                                                          |

From ENSDF

 $^{196}_{78} Pt_{118}\text{--}17$ 

 $^{196}_{78}\text{Pt}_{118}\text{--}17$ 

# $\gamma(^{196}\text{Pt})$ (continued)

| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | ${\rm E}_{\gamma}^{\dagger}$ | $I_{\gamma}^{\ddagger}$  | $E_f$    | $\mathbf{J}_f^{\pi}$    | Mult. <sup>d</sup> | $\alpha^{g}$          | Comments                                                                                                                                           |
|------------------------|----------------------|------------------------------|--------------------------|----------|-------------------------|--------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 2271.2                 | 2+                   | 1582.5 4                     | 100                      | 688.693  | 2+                      | M1+E2 <sup>e</sup> | 0.0033 10             | $\alpha(K)=0.0027 \ 8; \ \alpha(L)=0.00042 \ 12; \ \alpha(M)=0.00010 \ 3; \ \alpha(N+)=0.00015 \ 4$                                                |
| 2309.23                | $(2)^{+}$            | 461.86 3                     | 2.5 5                    | 1847.348 | 2+                      | [M1,E2]            | 0.06 4                | $\alpha(M = 0.053; \alpha(L) = 0.0104; \alpha(M) = 0.00227; \alpha(M = 0.0006622)$                                                                 |
|                        |                      | 947.4 6                      | 11 5                     | 1361.585 | 2+                      | [M1,E2]            | 0.011 5               | $\alpha$ (K)=0.009 4; $\alpha$ (L)=0.0015 6                                                                                                        |
|                        |                      | 1620.7 <i>3</i>              | 52 9                     | 688.693  | 2+                      |                    |                       |                                                                                                                                                    |
|                        |                      | 1953.1 6                     | 14 <b>a</b> 5            | 355.6841 | 2+                      |                    |                       |                                                                                                                                                    |
|                        |                      | 2310.9 <sup><i>i</i></sup> 3 | 100 <sup>i</sup> 18      | 0.0      | $0^+$                   | [E2]               | $1.56 \times 10^{-3}$ | $\alpha$ (K)=0.000954 <i>14</i> ; $\alpha$ (L)=0.0001446 <i>21</i> ; $\alpha$ (M)=3.31×10 <sup>-5</sup> <i>5</i> ; $\alpha$ (N+)=0.000425 <i>6</i> |
| 2324.224               | 1+,2+                | 470.567 19                   | 4.4 15                   | 1853.659 | 2+                      | [M1,E2]            | 0.06 4                | $\alpha(K)=0.05\ 3;\ \alpha(L)=0.009\ 4;\ \alpha(M)=0.0022\ 8;\ \alpha(N+)=0.00068\ 23$                                                            |
|                        |                      | 1188.9 2                     | 29 6                     | 1135.312 | $0^{+}$                 |                    |                       |                                                                                                                                                    |
|                        |                      | 1635.2 2                     | 100 15                   | 688.693  | $2^{+}$                 |                    |                       |                                                                                                                                                    |
| 2345.3                 | $1^+, 2^+$           | 1330.6 5                     | 52 16                    | 1015.044 | 3+                      |                    |                       |                                                                                                                                                    |
|                        | *                    | 1656.5 <i>3</i>              | 100 13                   | 688.693  | $2^{+}$                 |                    |                       |                                                                                                                                                    |
|                        |                      | 2344.1 10                    | 0.10 <sup>C</sup>        | 0.0      | $0^{+}$                 |                    |                       |                                                                                                                                                    |
| 2365.976               | 2+                   | 761.482 16                   | 100 13                   | 1604.494 | 2+                      | [M1,E2]            | 0.018 9               | $\alpha(K)=0.015 8; \alpha(L)=0.0026 11$                                                                                                           |
|                        |                      | 918.81 14                    | 78 9                     | 1447.043 | 3-                      | [E1]               | 0.00247               | $\alpha(K)=0.00208 \ 3; \ \alpha(L)=0.000307 \ 5; \ \alpha(M)=6.99\times10^{-5} \ 10; \ \alpha(N+)=2.05\times10^{-5} \ 3$                          |
| 2375.11                | $1^{+}.2^{+}$        | 770.8 4                      | $7^{a}$ 4                | 1604.494 | 2+                      |                    |                       | ······································                                                                                                             |
|                        | - ,-                 | 1686.6.3                     | 39.10                    | 688.693  | $\frac{-}{2^{+}}$       |                    |                       |                                                                                                                                                    |
|                        |                      | 2374.8.3                     | 100 10                   | 0.0      | $\bar{0}^{+}$           |                    |                       |                                                                                                                                                    |
| 2383.33                | $0^+.1^+.2^+$        | 369.46.5                     | 15.8                     | 2013.88  | $2^{+}$                 |                    |                       |                                                                                                                                                    |
| 2000.00                | °,1,2                | 1694.3 4                     | 100 23                   | 688.693  | $\frac{-}{2^+}$         |                    |                       |                                                                                                                                                    |
| 2403.66                | 2+                   | 418.73 3                     | 24 <sup><i>a</i></sup> 6 | 1984.93  | $\frac{1}{1^{+},2^{+}}$ | [M1,E2]            | 0.08 5                | $\alpha(K)=0.07\ 4;\ \alpha(L)=0.013\ 5;\ \alpha(M)=0.0031\ 9;\ \alpha(N+)=0.0010\ 3$                                                              |
|                        |                      | 726.0 <sup>h</sup> 7         | 39 <sup>ha</sup> 6       | 1677.256 | $2^{+}$                 | [M1,E2]            | 0.020 10              | $\alpha(K)=0.016 \ 9; \ \alpha(L)=0.0028 \ 11; \ \alpha(M)=0.00065 \ 25; \ \alpha(N+)=0.00019 \ 8$                                                 |
|                        |                      | 956.4 5                      | 65 22                    | 1447.043 | 3-                      | [E1]               | 0.00230               | $\alpha(K)=0.00193 \ 3; \ \alpha(L)=0.000284 \ 4; \ \alpha(M)=6.48\times10^{-5} \ 9; \ \alpha(M)=1.00\times10^{-5} \ 3$                            |
|                        |                      | 1042.4 6                     | 14 <sup><i>a</i></sup> 6 | 1361.585 | 2+                      | [M1,E2]            | 0.008 4               | $\alpha(K) = 0.007 \ 3; \ \alpha(L) = 0.0011 \ 4; \ \alpha(M) = 0.00026 \ 10; \ \alpha(N+) = 8 \ E - 5 \ 3$                                        |
|                        |                      | 1526.7 2                     | 100 <sup>a</sup> 16      | 876.865  | 4+                      | [E2]               | 0.00252               | $\alpha(K)=0.00202 \ 3; \ \alpha(L)=0.000325 \ 5; \ \alpha(M)=7.48\times10^{-5} \ 11; \ \alpha(N+)=9.67\times10^{-5} \ 14$                         |
| 2420.4                 | $(2.34^{+})$         | 1731 7 1                     | 100                      | 688 693  | 2+                      |                    |                       |                                                                                                                                                    |
| 2422 51                | $0^+ 1^+ 2^+$        | 423 7 3                      | 6522                     | 1998.96  | $\frac{2}{2^{+}}$       |                    |                       |                                                                                                                                                    |
| 2122,21                | J ,1 ,2              | 568 85 3                     | 4314                     | 1853 659 | $\frac{2}{2^{+}}$       |                    |                       |                                                                                                                                                    |
|                        |                      | 2066 5 3                     | 100 14                   | 355 6841 | $\frac{1}{2}$ +         |                    |                       |                                                                                                                                                    |
| 2423 42                | $(1^+ 2^+ 3)$        | 1408 4 1                     | 18 5                     | 1015 044 | <u>2</u> +              |                    |                       |                                                                                                                                                    |
| 2723.72                | (1,2,5)              | 2067 7 1                     | 100 5                    | 355 6841 | 2+                      |                    |                       |                                                                                                                                                    |
| 2423 7                 | 3-                   | 97673                        | 100 25                   | 1447 043 | <u>2</u><br>3-          |                    |                       |                                                                                                                                                    |
| 2723.1                 | 5                    | 2067.6 7                     | 92 42                    | 355.6841 | $2^{+}$                 |                    |                       |                                                                                                                                                    |

18

From ENSDF

 $^{196}_{78}\text{Pt}_{118}\text{--}18$ 

# $\gamma$ (<sup>196</sup>Pt) (continued)

| E <sub>i</sub> (level)     | $\mathbf{J}_i^{\pi}$                                            | $E_{\gamma}^{\dagger}$                                                                      | $I_{\gamma}^{\ddagger}$                                                       | $E_f$                                                  | ${ m J}_f^\pi$                                                                         | Mult. <sup>d</sup> | a <sup>g</sup>           | Comments                                                                                                                                                                                                                                                                   |
|----------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2429.7<br>2433.7<br>2438.0 | $3^{-}$<br>(0,1,2,3,4)<br>(1 <sup>+</sup> ,2,3,4 <sup>+</sup> ) | 1552.9 <i>3</i><br>2078.0 <i>2</i><br>1076.4 <i>I</i><br>1422.9 <i>I</i><br>1749.0 <i>2</i> | 100<br>100<br>56 8<br>100 <i>10</i><br>37 <i>12</i>                           | 876.865<br>355.6841<br>1361.585<br>1015.044<br>688.693 | 4 <sup>+</sup><br>2 <sup>+</sup><br>2 <sup>+</sup><br>3 <sup>+</sup><br>2 <sup>+</sup> |                    |                          |                                                                                                                                                                                                                                                                            |
| 2443.93                    | 2+                                                              | 430.2 <sup>j</sup> 3<br>1150.8 3                                                            | 40 9<br>100 20                                                                | 2013.88<br>1293.308                                    | 2+<br>4+                                                                               | [M1,E2]<br>[E2]    | 0.08 <i>4</i><br>0.00416 | $\alpha(K)=0.064; \alpha(L)=0.0124; \alpha(M)=0.00289; \alpha(N+)=0.0008125$<br>$\alpha(K)=0.003405; \alpha(L)=0.0005859; \alpha(M)=0.000136019;$<br>$\alpha(N+.)=4.10\times10^{-5}6$                                                                                      |
|                            |                                                                 | 1428.7 3                                                                                    | 87 20                                                                         | 1015.044                                               | 3+                                                                                     | [M1]               | 0.00541                  | $\alpha(K)=0.00444$ 7; $\alpha(L)=0.000692$ 10; $\alpha(M)=0.0001587$ 23;<br>$\alpha(N+)=0.0001165$ 17                                                                                                                                                                     |
| 2454.2                     | (7 <sup>-</sup> ,8 <sup>+</sup> )                               | 633.5 <i>3</i><br>1024.6 <i>3</i><br>1080.5 <i>5</i>                                        | $100^{@} 4$<br>$23^{@} 3$<br>$10^{@} 2$                                       | 1820.69<br>1429.74?<br>1373.60                         | 9 <sup>-</sup><br>(5 <sup>-</sup> ,6 <sup>+</sup> )<br>7 <sup>-</sup>                  |                    |                          |                                                                                                                                                                                                                                                                            |
| 2460.1                     | $0^+, 1^+, 2^+$                                                 | 2104.4 3                                                                                    | 100                                                                           | 355.6841                                               | 2+                                                                                     |                    |                          |                                                                                                                                                                                                                                                                            |
| 2468.0                     | 10-,11-                                                         | 647.3 2                                                                                     | 100 <sup>@</sup>                                                              | 1820.69                                                | 9-                                                                                     | E2                 | 0.01357                  | B(E2)(W.u.)>0.073<br>$\alpha$ (K)=0.01050 <i>15</i> ; $\alpha$ (L)=0.00235 <i>4</i> ; $\alpha$ (M)=0.000561 <i>8</i> ;<br>$\alpha$ (N+)=0.0001628 <i>23</i><br>Mult.: from <sup>196</sup> Ir $\beta$ <sup>-</sup> decay (1.40 h).                                          |
| 2469.85                    | 1 <sup>-</sup> ,2 <sup>+</sup>                                  | 715.3 <sup>h</sup> 4                                                                        | 10 <sup>h</sup> 3                                                             | 1754.655                                               | 3-,4+                                                                                  |                    |                          | $\alpha(K) = 0.0676; \alpha(L) = 0.01250$                                                                                                                                                                                                                                  |
|                            |                                                                 | 1334.3 <i>3</i><br>2114.4 <i>3</i><br>2469.7 <sup><i>i</i></sup> <i>4</i>                   | 33 7<br>56 7<br>100 <sup>i</sup> 3                                            | 1135.312<br>355.6841<br>0.0                            | $0^+ 2^+ 0^+$                                                                          |                    |                          | $\alpha(K)=0.00260; \ \alpha(L)=0.00043$                                                                                                                                                                                                                                   |
| 2488.238                   | 1+,2+                                                           | 225.810 <i>18</i><br>1353.0 <i>hj</i> 4<br>1799.5 4<br>2132.9 7<br>2488 1 6                 | $ \begin{array}{r} 16 7 \\ 30^{h} 11 \\ 100 23 \\ 45 16 \\ 50 0 \end{array} $ | 2262.428<br>1135.312<br>688.693<br>355.6841            | $2^+$<br>$0^+$<br>$2^+$<br>$2^+$<br>$0^+$                                              |                    |                          |                                                                                                                                                                                                                                                                            |
| 2505.12                    | 2+                                                              | 2488.1 0<br>1143.53 5<br>2149.1 7<br>2505.2 4                                               | 40 8<br>26 10<br>100 10                                                       | 0.0<br>1361.585<br>355.6841<br>0.0                     |                                                                                        |                    |                          |                                                                                                                                                                                                                                                                            |
| 2527.84                    | 1+,2+                                                           | 639.701 <i>32</i><br>1080.5 <i>j 4</i><br>1839.4 <i>3</i>                                   | 13 <i>3</i><br>18 8<br>100 <i>13</i>                                          | 1888.139<br>1447.043<br>688.693                        | 1 <sup>+</sup> ,2 <sup>+</sup><br>3 <sup>-</sup><br>2 <sup>+</sup>                     |                    |                          | $\alpha(K)=0.00155; \ \alpha(L)=0.00023$                                                                                                                                                                                                                                   |
| 2529.3                     | 2+                                                              | 2526.9 <i>10</i><br>775.1 <i>5</i><br>2173.5 <i>3</i>                                       | $0.53^{\circ}$<br>$15^{a} 6$<br>$100^{a} 24$                                  | 0.0<br>1754.655<br>355.6841                            | $0^+$<br>$3^-,4^+$<br>$2^+$                                                            |                    |                          | $\alpha(K)= 0.0541; \ \alpha(L)=0.00984$                                                                                                                                                                                                                                   |
| 2570.8                     | 1+                                                              | 1883                                                                                        | <100                                                                          | 688.693                                                | 2+                                                                                     | (M1)               | 0.00301                  | $\alpha$ (K)=0.00224 4; $\alpha$ (L)=0.000346 5; $\alpha$ (M)=7.93×10 <sup>-5</sup> 12;<br>$\alpha$ (N+)=0.000349 5<br>B(M1)(W.u.)=0.06 +7-6<br>E <sub><math>\gamma</math></sub> ,I <sub><math>\gamma</math></sub> ,Mult.: from <sup>196</sup> Pt( $\gamma$ , $\gamma'$ ). |

19

|                        |                                           |                              |                         |          | Adop                     | oted Levels                 | s, Gammas (co         | ontinued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------|-------------------------------------------|------------------------------|-------------------------|----------|--------------------------|-----------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                           |                              |                         |          |                          | $\gamma$ ( <sup>196</sup> F | Pt) (continued)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$                      | ${\rm E}_{\gamma}^{\dagger}$ | $I_{\gamma}^{\ddagger}$ | $E_f$    | $\mathbf{J}_f^{\pi}$     | Mult. <sup>d</sup>          | $\alpha^{g}$          | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2570.8                 | 1+                                        | 2216                         | 33 8                    | 355.6841 | 2+                       | (E2)                        | $1.60 \times 10^{-3}$ | B(E2)(W.u.)=1.8 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        |                                           | 2571                         | 56 9                    | 0.0      | 0+                       | M1                          | 0.00202               | $\alpha(K)=0.001029 \ 15; \ \alpha(L)=0.0001566 \ 22; \ \alpha(M)=3.58\times10^{-5} \ 5; \\ \alpha(N+)=0.000381 \ 6 \\ E_{\gamma},I_{\gamma},Mult.: \ from \ ^{196}Pt(\gamma,\gamma'). \\ B(M1)(W.u.)=0.025 \ 11 \\ \alpha(K)=0.001041 \ 15; \ \alpha(L)=0.0001594 \ 23; \ \alpha(M)=3.65\times10^{-5} \ 6; \\ \alpha(N+)=0.000788 \ 11 \\ E_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma},L_{\gamma$ |
| 2603.2                 | (1,2,3,4,5)                               | 1588.1 <i>1</i>              | 100                     | 1015.044 | 3+                       |                             |                       | $E_{\gamma}, I_{\gamma}, Mult.:$ from $F^{\gamma}PI(\gamma, \gamma')$ .<br>$E_{\gamma}$ : from level scheme deduced by evaluators, $E\gamma = 1558.1 \text{ keV}$<br>from fig. 2 and table 1 of 1993Di05 may misprint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2606.0                 | (2,3,4,5)                                 | 1729.2 <i>1</i>              | 100                     | 876.865  | 4+                       |                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2608.0                 | 3-                                        | 2252.3 1                     | 100                     | 355.6841 | 2+                       |                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2626.4                 | (1,2,3)                                   | 1264.8 1                     | 100 5                   | 1361.585 | 2+<br>2+                 |                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2631.1                 | $(2^+ 3 4^+)$                             | 1938.3 3                     | 37 3<br>100             | 088.093  | 2+<br>2+                 |                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2667.246               | $(2^{+}, 3^{+}, 7^{+})$<br>$1^{+}, 2^{+}$ | 698.23 4                     | 6.5 12                  | 1968.906 | $\frac{2}{1^{+}}(2^{+})$ |                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        | - ,                                       | 748.66 6                     | 3.8 15                  | 1918.54  | 0+                       |                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        |                                           | 864.72 <sup>j</sup> 8        | 2.8 6                   | 1802.302 | $1^+, 2^+$               |                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        |                                           | 1062.66 6                    | 92                      | 1604.494 | 2+                       |                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        |                                           | 1264.6 2                     | 13 2                    | 1402.727 | 0+                       | [E2]                        | 0.00349               | $\begin{aligned} &\alpha(\mathbf{K}) = 0.00285 \ 4; \ \alpha(\mathbf{L}) = 0.000478 \ 7; \ \alpha(\mathbf{M}) = 0.0001108 \ 16; \\ &\alpha(\mathbf{N}+) = 4.39 \times 10^{-5} \ 7 \\ &\mathbf{B}(\mathbf{E2})(\mathbf{W}.\mathbf{u}.) = 0.97 \ + 18 - 22 \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                        |                                           | 1305.59 4                    | 40 3                    | 1361.585 | $2^{+}$                  |                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        |                                           | 1532.30 <sup>i</sup> 5       | 35 <sup>i</sup> 12      | 1135.312 | 0+                       | [E2]                        | 0.00250               | $\alpha$ (K)=0.00201 3; $\alpha$ (L)=0.000322 5; $\alpha$ (M)=7.42×10 <sup>-5</sup> 11;<br>$\alpha$ (N+)=9.84×10 <sup>-5</sup> 14<br>B(E2)(W.u.)=1.0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        |                                           | 1978.6 2                     | 100 8                   | 688.693  | 2+                       |                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        |                                           | 2310.9 <sup><i>i</i></sup> 3 | 38 <sup>i</sup> 8       | 355.6841 | 2+                       |                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2692.2                 | 2-                                        | 2336.5 6                     | 100                     | 355.6841 | 2+                       |                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2711.0                 | 3-                                        | 2022.2 1                     | 100 8                   | 688.693  | 2+<br>2+                 |                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2736 1                 | $(1^{+})$                                 | 2555.5 1                     | 39 8<br>100             | 0.0      | $\overset{2}{0^{+}}$     |                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2749.6                 | $(7^{-}8^{+})$                            | 497 1                        | $26^{b}$ g              | 2252 7   | 8+                       |                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2177.0                 | (7,0)                                     | 742 1                        | $100^{b}$ 11            | 2007 4   | 6 <sup>+</sup>           |                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        |                                           | 030 1                        | $20^{b} 5$              | 1820.60  | 0-                       |                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        |                                           | 1375 1                       | $11^{b}$ 5              | 1373 60  | 9<br>7-                  |                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2824.0                 | 1+                                        | 2135                         | 38 <i>13</i>            | 688.693  | 2+                       | (M1)                        | 0.00246               | $\alpha(K)=0.001643\ 23;\ \alpha(L)=0.000253\ 4;\ \alpha(M)=5.80\times10^{-5}\ 9;\ \alpha(N+)=0.000509\ 8$<br>B(M1)(W.u.)=0.050\ 20<br>E L Mult : from <sup>196</sup> Pt( $\alpha \alpha'$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        |                                           | 2468                         | 105 18                  | 355 6841 | 2+                       | (F2)                        | $1.50 \times 10^{-3}$ | $E_{\gamma}, E_{\gamma}, $                                                                                                       |
|                        |                                           | 2700                         | 105 10                  | 555.0041 | 2                        | (122)                       | 1.50^10               | $\alpha(K)=0.000848 \ I2; \ \alpha(L)=0.0001276 \ I8; \ \alpha(M)=2.92\times10^{-5} \ 4;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# $^{196}_{78}\text{Pt}_{118}\text{--}20$

From ENSDF

 $^{196}_{78}\text{Pt}_{118}\text{--}20$ 

|                        | Adopted Levels, Gammas (continued)                   |                                                             |                                 |                                     |                                                                                                               |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|------------------------|------------------------------------------------------|-------------------------------------------------------------|---------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                        | $\gamma$ <sup>(196</sup> Pt) (continued)             |                                                             |                                 |                                     |                                                                                                               |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                                   | $E_{\gamma}^{\dagger}$                                      | $I_{\gamma}$ ‡                  | $E_f$                               | ${ m J}_f^\pi$                                                                                                | Mult. <sup>d</sup> | $\alpha^{g}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| 2824.0                 | 1+                                                   | 2824                                                        | 100 15                          | 0.0                                 | 0+                                                                                                            | M1                 | 0.00193      | $\begin{aligned} &\alpha(\text{N}+)=0.000497\ 7\\ &E_{\gamma},I_{\gamma},\text{Mult.: from }^{196}\text{Pt}(\gamma,\gamma').\\ &B(\text{M1})(\text{W.u.})=0.057\ 15\\ &\alpha(\text{K})=0.000827\ 12;\ \alpha(\text{L})=0.0001264\ 18;\ \alpha(\text{M})=2.89\times10^{-5}\ 4;\\ &\alpha(\text{N}+)=0.000943\ 14\\ &E_{\gamma},I_{\gamma},\text{Mult.: from }^{196}\text{Pt}(\gamma,\gamma'). \end{aligned}$ |  |  |  |  |  |  |
| 2875.4<br>2888.8?      | $1^+,(2)^+$<br>(9 <sup>-</sup> ,10,11 <sup>-</sup> ) | 2875.4<br>420.9 <i>3</i><br>727.3 <i>2</i><br>1068 <i>2</i> | 100<br>96 37<br>100 37<br>2.7 7 | 0.0<br>2468.0<br>2161.5?<br>1820.69 | 0 <sup>+</sup><br>10 <sup>-</sup> ,11 <sup>-</sup><br>(9 <sup>-</sup> ,10,11 <sup>-</sup> )<br>9 <sup>-</sup> |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| 3044.0                 | (10 <sup>+</sup> )                                   | 791.3 7                                                     | 100 <sup>b</sup>                | 2252.7                              | 8+                                                                                                            | [E2]               | 0.00880      | $\alpha(K)=0.00699 \ 10; \ \alpha(L)=0.001392 \ 20; \ \alpha(M)=0.000329 \ 5; \ \alpha(N+.)=9.59\times10^{-5} \ 14$                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| 3124.2                 | 1,2                                                  | 3124.2                                                      | 100                             | 0.0                                 | $0^{+}$                                                                                                       |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| 3131.8                 | 1,2                                                  | 3131.8                                                      | 100                             | 0.0                                 | $0^{+}$                                                                                                       |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| 3161.9                 | (9 <sup>-</sup> ,10,11 <sup>-</sup> )                | 693.9 <i>2</i>                                              | 100 <sup>@</sup> 7              | 2468.0                              | 10-,11-                                                                                                       |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|                        |                                                      | 1341.5 5                                                    | 6.6 <sup>@</sup> 7              | 1820.69                             | 9-                                                                                                            |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| 3176.3?                | (9 <sup>-</sup> )                                    | 722.0 <sup>#</sup> 4                                        | 100 10                          | 2454.2                              | $(7^{-}, 8^{+})$                                                                                              |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|                        |                                                      | 1355.8 <sup>#</sup> 5                                       | 9.0 15                          | 1820.69                             | 9-                                                                                                            |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| 3214.8?                | (9 <sup>-</sup> )                                    | 760.6 <sup>#</sup> 3                                        | 100 6                           | 2454.2                              | $(7^{-}.8^{+})$                                                                                               |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|                        |                                                      | 1394.0 <sup>#</sup> 5                                       | 9.5 19                          | 1820.69                             | 9-                                                                                                            |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| 3298.0                 | 2+                                                   | 3298.0                                                      | 100                             | 0.0                                 | 0+                                                                                                            |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| 3303.5                 | $(10, 11^{-})$                                       | 835.6 2                                                     | 100 <sup>@</sup> 3              | 2468.0                              | 10-,11-                                                                                                       |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|                        |                                                      | 849.4 <i>3</i>                                              | 8.0 <sup>@</sup> 8              | 2454.2                              | $(7^{-}, 8^{+})$                                                                                              |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|                        |                                                      | 1482.5 4                                                    | 36 <sup>@</sup> 3               | 1820.69                             | 9-                                                                                                            |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| 3366.8                 | 1,2                                                  | 3366.8                                                      | 100                             | 0.0                                 | $0^{+}$                                                                                                       |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| 3424.3                 | 1,2                                                  | 3424.3                                                      | 100                             | 0.0                                 | $0^{+}$                                                                                                       |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |

<sup>†</sup> From <sup>195</sup>Pt(n, $\gamma$ ) E=thermal, except where noted. For primary  $\gamma$  observed following neutron capture see <sup>195</sup>Pt(n, $\gamma$ ). For unplaced  $\gamma$ 's (not listed here) see <sup>196</sup>Ir

 $\beta^-$  decay (1.40 h), <sup>195</sup>Pt(n, $\gamma$ ) E=thermal and E=11.9 eV, and Coulomb excitation. <sup>‡</sup> Relative photon branching ratios from each level, obtained mainly from <sup>195</sup>Pt(n, $\gamma$ ) E=thermal, except where noted.

<sup>#</sup> Placement based primarily on decay scheme.

<sup>@</sup> From <sup>196</sup>Ir  $\beta^-$  decay (1.40 h).

<sup>&</sup> From <sup>196</sup>Pt(d,pn $\gamma$ ).

<sup>*a*</sup> From <sup>195</sup>Pt(n, $\gamma$ ) E=11.9 eV.

<sup>b</sup> From Coulomb excitation.

<sup>c</sup> Photons per 100 n-captures in natural Pt (1970Ro05).

#### $\gamma(^{196}\text{Pt})$ (continued)

- <sup>d</sup> From  $\alpha$ (K)exp, K/L, L/M+ in <sup>196</sup>Au  $\varepsilon$  decay (6.1669 d) and <sup>196</sup>Ir  $\beta^-$  decay (1.40 h), except where noted.
- <sup>*e*</sup> From  $\gamma(\theta)$  in 2002Ta14.
- <sup>f</sup> From  $\gamma\gamma(\theta)$  in <sup>196</sup>Au  $\varepsilon$  decay (6.1669 d) when sign is given; otherwise, the value is given in Coulomb excitation.
- g Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

<sup>h</sup> Multiply placed with undivided intensity.

<sup>*i*</sup> Multiply placed with intensity suitably divided.

<sup>*j*</sup> Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level



 $^{196}_{78}{\rm Pt}_{118}$ 









#### Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Legend



#### Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided



#### Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided



#### Level Scheme (continued)









Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided



#### Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided





 $^{196}_{78} Pt_{118}\text{--}36$ 

 $^{196}_{78}\text{Pt}_{118}\text{--}36$ 

Adopted Levels, Gammas

From ENSDF

#### Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided



<sup>196</sup><sub>78</sub>Pt<sub>118</sub>



<sup>196</sup><sub>78</sub>Pt<sub>118</sub>