¹⁹⁶Os β^- decay (34.9 min) 1977Ha32

History						
Type	Author	Citation	Literature Cutoff Date			
Full Evaluation	Huang Xiaolong	NDS 108, 1093 (2007)	1-Jan-2006			

Parent: 196 Os: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=34.9$ min 2; $Q(\beta^-)=1158$ 56; $\%\beta^-$ decay=100.0

Source prepared by 198 Pt(N,n2p γ) E=25-160 MeV; enriched target; chem; measured E γ , I γ (Ge(Li), Si(Li)), E β , I β (scin), $\beta\gamma$ coin; identification of 196 Os by observations of known daughter transitions and K α x ray of 196 Ir.

The decay scheme of 1977Ha32 should be considered as very tentative. This is based primarily on the observed singles γ -spectrum decaying with the 34.9-min half-life of ¹⁹⁶Os and the secular equilibrium of γ 's from the 52-s ¹⁹⁶Ir daughter. The gammas were placed without γ - γ coincidence measurement information, based only on energy sums and systematics. See 1977Ha32 in detail.

The authors' Q value of 843 keV 50, based on $\beta\gamma$ coin with the 408 γ , compared with the newly evaluated value of 1158 keV 56 (2003Au03), suggests a problem with the decay scheme. Because of this discrepancy and the lack of mult information (upper limits on α (K)exp only), the evaluators have just adopted the partial decay scheme proposed by 1977Ha32.

¹⁹⁶Ir Levels

E(level) [†]	J^{π}	$T_{1/2}^{\ddagger}$	Comments
0.0	(0-)	52 s <i>I</i>	J^{π} : From ¹⁹⁶ Ir Adopted Levels. Proposed configuration $\pi(1/2+(400)) + \nu(1/2-(510))$, Nilsson orbitals (1977Ha32).
126.20 20	(1-)		J^{π} : log $ft \le 6.6$ from 0^{+} . E(level): no independent corroboration for placement of level.
207.04 <i>16</i> 407.88 <i>18</i> 522.37 <i>20</i>	(1^{-}) $(0,1)^{+}$ $(0,1)^{+}$		J^{π} : J^{π} =(1 ⁻) are expected from systematics of odd-odd Ir isotopes. J^{π} : log $ft \le 6.1$ from 0 ⁺ . J^{π} : log $ft \le 6.1$ from 0 ⁺ .

[†] From least-squares fit to E γ 's.

β^- radiations

E(decay)	E(level)	$\underline{\mathrm{I}\beta^{-\dagger\ddagger}}$	Log ft	Comments
$(6.4 \times 10^2 \ 6)$	522.37	≥3.3	≤6.1	av Eβ=196 20
$(7.5 \times 10^2 \ 6)$	407.88	≥6.5	≤6.1	av E β =237 21
$(1.03 \times 10^3 6)$	126.20	≥5.3	≤6.6	av E β =344 22
$(1.16 \times 10^3 6)$	0.0	<85	>5.6	av E β =393 23
				$I\beta^-$: Derived the upper limit from transition abundances to the ground state as
				measured by γ -ray intensities without correction for internal conversion.

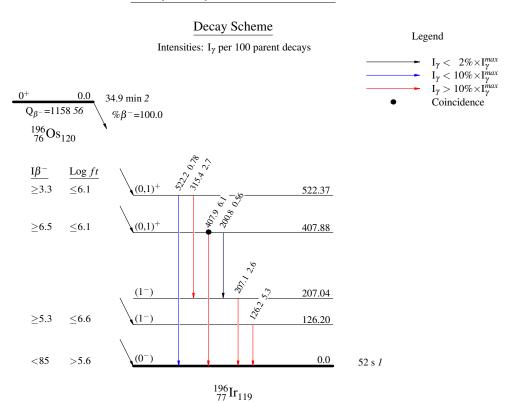
[†] From photon intensity imbalance.

$\gamma(^{196} \text{Ir})$

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger}$	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f J	f
126.2 2	5.3 3	126.20	(1-)	0.0 (0	-)
200.8 <i>3</i>	0.56 5	407.88	$(0,1)^+$	207.04 (1	-)
207.1 2	2.4 1	207.04	(1^{-})	$0.0 (0^{-}$	-)
^x 257.8 2	2.3 1				
x308.0 4	0.43 8				
315.4 2	2.5 1	522.37	$(0,1)^+$	207.04 (1	-)
407.9 2	5.9 2	407.88	$(0,1)^+$	$0.0 (0^{-}$	-)

Continued on next page (footnotes at end of table)

[‡] From ¹⁹⁶Ir Adopted Levels.


[‡] Absolute intensity per 100 decays.

 196 Os β^- decay (34.9 min) 1977Ha32 (continued)

γ (196Ir) (continued)

- [†] Values from 1977Ha32. [‡] Absolute intensity per 100 decays. x γ ray not placed in level scheme.

¹⁹⁶Os β⁻ decay (34.9 min) 1977Ha32

