<sup>196</sup>Pt( $\alpha$ ,4n $\gamma$ ), <sup>197</sup>Au(d,3n $\gamma$ ) 1983He14,1981Kr04,1974Pr13

| Туре            | Author         | Citation             | Literature Cutoff Date |
|-----------------|----------------|----------------------|------------------------|
| Full Evaluation | Huang Xiaolong | NDS 108, 1093 (2007) | 1-Jan-2006             |

#### Included <sup>194</sup>Pt( $\alpha$ ,2n $\gamma$ ), <sup>195</sup>Pt( $\alpha$ ,3n $\gamma$ ).

2006Le06: <sup>194</sup>Pt( $\alpha$ ,2n $\gamma$ ),98% enriched <sup>196</sup>Pt, E=27 MeV,Measured E $\gamma$ , I $\gamma(\theta$ ,H,t), deduced isometric states g factors. IPAD technique. Transition intensities are relative to  $426\gamma$ .

1983He14: 97% enriched <sup>196</sup>Pt.  $E(\alpha)$ =48.6 MeV. Measured Ey, Iy, t,  $\gamma\gamma$ (t)-coincidence withGe(Li) detectors and low-energy photon spectrometer.  $\gamma$ -angular distributions were determined from I $\gamma$ 's measured at five angles between 90° and 157°. Level scheme is based firmly on the  $\gamma\gamma$ -coincidence results.

1983Gu05: 98% enriched <sup>196</sup>Pt.  $E(\alpha)$ =50 MeV. Measured ce-ce- $T_{1/2}$  coincidence. Electron spectrometer with superconducting solenoid and Si(Li).

1981Kr04, 1980Kr21: <sup>196</sup>Pt( $\alpha$ ,4n $\gamma$ ) E( $\alpha$ )=48 MeV; <sup>194</sup>Pt( $\alpha$ ,2n $\gamma$ ) E=30 MeV; <sup>197</sup>Au(d,3n $\gamma$ ) E(d)=22 MeV. Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ -coin, summed coin, Ice, Ce(t).  $\gamma(\theta,H)$ ,  $\gamma(\theta) \theta=40^{\circ}$  to 90°. Iron-free orange spectrometer.

1985Ko13:  $E(\alpha)=50$  MeV. 97.5% enriched <sup>196</sup>Pt. Measured ce-ce coin. Double orange spectrometer.

1984Go06: 87% enriched <sup>194</sup>Pt, <sup>194</sup>Pt( $\alpha$ ,2n $\gamma$ ) E=27 MeV. Measured  $\gamma(\theta$ ,H),  $\gamma(\theta$ ,H,t). DPAD, IPAD methods.

1974Pr13: 30% enriched <sup>196</sup>Pt,  $E(\alpha)$ =47 MeV. 30% <sup>195</sup>Pt( $\alpha$ ,3n)  $E(\alpha)$ =34 MeV.

### <sup>196</sup>Hg Levels

| E(level) <sup>@</sup>          | Jπ&                | T <sub>1/2</sub>  | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------|--------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0 <sup>†</sup>               | 0+                 | stable            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 426.00 <sup>†</sup> 10         | 2+                 |                   | $g=-0.005 \ 40 \ (1984Go06)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1061.50 <sup>†</sup> <i>15</i> | 4+                 |                   | $g=-0.077 \ 33 \ (1984Go06)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1757.09 <sup>‡</sup> <i>17</i> | 5-                 |                   | $g=-0.048\ 50\ (1984Go06)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1785.21 <sup>†</sup> <i>17</i> | (6 <sup>+</sup> )  |                   | $\omega \tau = 0.17 \ 7 \ (1980 \text{Kr}^{21}).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1841.41 <sup>‡</sup> 23        | 7-                 | 5.2 ns 2          | <ul> <li>g: g=-0.040 19 (1984Go06), From -0.031 28 for DPAD; -0.048 23 for IPAD (1984Go06).<br/>Other: -0.030 17 for IPAD (2006Le06).</li> <li>g: g factor indicate that the quasiparticle structure of these states is determined mainly by the rotationally aligned i<sub>13/2</sub> neutron and a neutron with low J.<br/>T<sub>1/2</sub>: from γ(θ,H,t) (1984Go06).</li> <li>B(E2)(↓)=0.2041 87 (1970To14).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2058.54 <sup>#</sup> 21        | (6)-               |                   | This level is confirmed by a definite $273\gamma$ deexcitation branch to the 6 <sup>+</sup> level (1983He14).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2064.42 <sup>‡</sup> 24        | 9-                 | 0.355 ns 18       | $T_{1/2}$ : from Ce(t) (1977Gu05).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2097.8 <sup>#</sup> 3          | (8-)               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2262.81 <sup>†</sup> 20        | (8+)               |                   | $\omega \tau = 0.11 \ 6 \ (1980 \text{Kr}21).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2342.3 <sup>†</sup> 3          | (10 <sup>+</sup> ) | 4.83 ns <i>19</i> | g=-0.26 <i>13</i><br>g: Recalculated for T <sub>1/2</sub> =4.83 ns <i>19</i> from g=-0.18 9 if τ=10.1 ns <i>14</i> (1980Kr21).<br>g: Other: -0.19 6 for IPAD (2006Le06).<br>g: The authors' g factor measurement is probably a composite of values for the 10 <sup>+</sup> 2342<br>and 12 <sup>+</sup> 2439 levels (evaluators).<br>average $\omega\tau$ =0.14 6 (1980Kr21).<br>As $\nu(i_{13/2})$ -2 aligned quasi-particle state (1981Kr04).<br>T <sub>1/2</sub> : weighted average of 4.75 ns 22 from ce time spectra (1985Ko13), and 5.1 ns 4<br>from ce time spectra (1981Kr04). Others: 7 ns <i>1</i> from Ag(t) (1974Pr13).<br>T <sub>1/2</sub> : average $\omega\tau$ =0.14 6 (1980Kr21). B(E2)=0.236 <i>13</i> (1985Ko13), 0.218 <i>20</i><br>(1983Gu05). 0.220 <i>17</i> . neglecting 10 <sup>+</sup> to 9 <sup>-</sup> branch<5% (1981Kr04). |
| 2359.03 25                     | (8 <sup>-</sup> )  |                   | (1) 00 0 0 000), 0.220 17, hegioting 10 00 y oranon_10 / (1) 01110 /).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2439.0 <sup>†</sup> 3          | (12 <sup>+</sup> ) | 3.5 ns 3          | T <sub>1/2</sub> : from ce time spectra (1981Kr04).<br>T <sub>1/2</sub> : B(E2)=0.254 23 (1985Ko13), 0.254 15 (1983Gu05), and 0.256 22, neglecting 10 <sup>+</sup> to 9 <sup>-</sup> branch≤15% (1981Kr04).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2553.8 <sup>#</sup> 3          | (10 <sup>-</sup> ) |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

#### <sup>196</sup>Pt( $\alpha$ ,4n $\gamma$ ), <sup>197</sup>Au(d,3n $\gamma$ ) 1983He14,1981Kr04,1974Pr13 (continued)

## <sup>196</sup>Hg Levels (continued)

| E(level) <sup>@</sup>        | J <sup>π &amp;</sup> | E(level) <sup>@</sup> | Jπ&                | E(level)@             | Jπ&                | E(level) <sup>@</sup> | Jπ&                |
|------------------------------|----------------------|-----------------------|--------------------|-----------------------|--------------------|-----------------------|--------------------|
| 2620.6 <sup>‡</sup> 3        | (11-)                | 3199.6? 4             | (+)                | 3507.5 <sup>†</sup> 4 | (16 <sup>+</sup> ) | 3976.1 <sup>‡</sup> 4 | (17 <sup>-</sup> ) |
| 2843.6 <sup>†</sup> <i>3</i> | (14+)                | 3236.6 <sup>#</sup> 4 | (12 <sup>-</sup> ) | 3684.3? 4             | (+)                | 4321.1 <sup>†</sup> 4 | (18+)              |
| 2929.6 <sup>#</sup> 4        | (10 <sup>-</sup> )   | 3310.9 <sup>‡</sup> 3 | (13 <sup>-</sup> ) | 3697.2 <sup>‡</sup> 3 | (15 <sup>-</sup> ) | 4388.0 <sup>‡</sup> 4 | (19 <sup>-</sup> ) |
| 2977?                        | (*)                  | 3402.1? 4             | $(^{+})$           | 3792?                 | (15 <sup>+</sup> ) | 5038.5 <sup>‡</sup> 5 | (21 <sup>-</sup> ) |

<sup>†</sup> Band(A): positive-parity g.s. band. Higher states consistent with Configuration= $(\nu \ li_{13/2})^{+2}$  (1980Kr21). <sup>‡</sup> Band(B): odd-spin negative-parity band built on 5<sup>-</sup> level.

<sup>#</sup> Band(C): even-spin negative-parity band built on  $(6)^-$  level. <sup>@</sup> The level scheme is that proposed by 1983He14. Values from least-squares fit to  $E\gamma's$ .

& From Adopted Levels.

| $E_{\gamma}^{\dagger}$  | $I_{\gamma}^{\dagger}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$                    | $E_f$              | $\mathbf{J}_f^{\pi}$           | Mult. <sup>‡</sup> | α <b>#</b> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------|------------------------|------------------------|-----------------------------------------|--------------------|--------------------------------|--------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (39.2)<br>79.5 <i>3</i> | 27 5                   | 2097.8<br>2342.3       | (8 <sup>-</sup> )<br>(10 <sup>+</sup> ) | 2058.54<br>2262.81 | $(6)^{-}$<br>(8 <sup>+</sup> ) | E2                 | 14.5 4     | $\alpha$ (L)=10.88 25; $\alpha$ (M)=2.84 7; $\alpha$ (N+)=0.822 19<br>Mult.: from (L1+L2)/L3=1.2 2 (1983Gu05), A <sub>2</sub> >0<br>(1983He14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 84.3 2                  | 38 4                   | 1841.41                | 7-                                      | 1757.09            | 5-                             | E2                 | 0.556      | $I_{(\gamma+ce)}: 65 \ 6(2006Le06).$<br>$\alpha=0.556; \ \alpha(L)=8.33; \ \alpha(M)=2.17; \ \alpha(N+)=0.678$<br>$B(E2)(W.u.)=29.6 \ 13$<br>Mult.: (L1+L2)/L3=1.3 2 (1983Gu05).<br>$I_{\gamma}: I\gamma=4 \ from \ 1981Kr04.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 96.7 2                  | 59 6                   | 2439.0                 | (12 <sup>+</sup> )                      | 2342.3             | (10+)                          | E2                 | 6.39 11    | I <sub>(γ+ce)</sub> : 235 25(2006Le06).<br>Mult.: from L-subshell intensity ratio (1981Kr04),<br>and A <sub>2</sub> =0.30 4; A <sub>4</sub> =-0.00 6 (1983He14).<br>$\alpha$ (K)=0.624 9; $\alpha$ (L)=4.31 8; $\alpha$ (M)=1.127 20;<br>$\alpha$ (N+)=0.326 6<br>E <sub>γ</sub> : 1974Pr13 placed 97γ from 10 <sup>+</sup> to 8 <sup>+</sup> .<br>I <sub>(γ+ce)</sub> : 2.7 3(2006Le06).<br>Mult.: (L1+L2)/L3=1.3 2 (1983Gu05).                                                                                                                                                                                                                                                                                               |
| 223.0 <i>1</i>          | 250 20                 | 2064.42                | 9-                                      | 1841.41            | 7-                             | E2                 | 0.271      | Mult.: from L-subshell intensity ratio (1981Kr04);<br>$A_2=0.27 \ 2; \ A_4=-0.08 \ 3 \ (1983He14). \ A_2=0.6 \ 2 \ (1974Pr13).$<br>B(E2)(W.u.)=33.6 <i>18</i><br>$\alpha(K)=0.1301 \ 19; \ \alpha(L)=0.1055 \ 15; \ \alpha(M)=0.0271 \ 4; \ \alpha(N+)=0.00791 \ 12$<br>I <sub>Y</sub> : others: I <sub>Y</sub> =240 (1981Kr04); I <sub>Y</sub> =150 30 (1974Pr13).                                                                                                                                                                                                                                                                                                                                                            |
| 256.4 2                 | 12 2                   | 2097.8                 | (8 <sup>-</sup> )                       | 1841.41            | 7-                             | M1+E2              | 0.36 20    | Mult.: deduced from K/L=1.2 <i>1</i> (1983Gu05) and<br>A <sub>2</sub> =0.30 <i>1</i> ; A <sub>4</sub> =-0.06 <i>2</i> (1983He14). A <sub>2</sub> =0.46<br><i>15</i> (1974Pr13).<br>$\alpha(K)=0.27$ <i>19</i> ; $\alpha(L)=0.068$ <i>9</i> ; $\alpha(M)=0.0165$ <i>13</i> ;<br>$\alpha(N+)=0.0049$ <i>5</i><br>Mult.: from A <sub>2</sub> =-0.29 <i>5</i> ; A <sub>4</sub> =0.19 <i>7</i> (1983He14).<br>E <sub><math>\gamma</math></sub> : placed by 1983He14 as defining the 8 <sup>-</sup> level.<br>1981Kr04 show a tentative 8 <sup>-</sup> to 7 <sup>-</sup> 301 $\gamma$ , and<br>1983Gu05 define the 8 <sup>-</sup> by a 217.2 $\gamma$ to 7 <sup>-</sup> , with<br>mult=M1+E2, $\delta$ =0.55 from K/L=4.9 <i>5</i> . |

## $\gamma(^{196}\text{Hg})$

#### <sup>196</sup>Pt( $\alpha$ ,4n $\gamma$ ), <sup>197</sup>Au(d,3n $\gamma$ ) 1983He14,1981Kr04,1974Pr13 (continued) $\gamma(^{196}\text{Hg})$ (continued) α**#** $E_{\gamma}^{\dagger}$ $I_{\gamma}^{\dagger}$ Mult.<sup>‡</sup> E<sub>i</sub>(level) $J_i^{\pi}$ $E_f$ $J^{\pi}$ Comments 1983He14 pointed out that the isotopic assignment of 217 K conversion line must be questioned. 261.0<sup>@</sup> 2 72 2359.03 $(8^{-})$ 2097.8 $(8^{-})$ 273.3 2 2058.54 51 1785.21 (6<sup>+</sup>) $(6)^{-}$ 278.9 2 2342.3 $(10^{+})$ 2064.42 9-E1 0.0330 $\alpha(K)=0.0271 4; \alpha(L)=0.00451 7; \alpha(M)=0.001046$ 15; $\alpha$ (N+..)=0.000311 5 Mult.: deduced from ce(K)(278)/ce(K)(223) In the spectra In coin with 96 $\gamma$ and K/L=5 (1983Gu05). $I_{\gamma}$ : branching intensity from 10<sup>+</sup> to 9<sup>-</sup> level: $\leq 15\%$ supposed by 1981Kr04, not confirmed In the spectrum gated by $223\gamma$ ; Branching $\leq 3\%$ (1983He14);≈5% (1991Me06). $I_{(\gamma+ce)}: 0.3 \ l(2006Le06).$ 278.9 2 0.1326 $\alpha(K)=0.0753 \ 11; \ \alpha(L)=0.0432 \ 7; \ \alpha(M)=0.01100$ 130 15 3976.1 $(17^{-})$ 3697.2 (15<sup>-</sup>) (E2) *16*; *α*(N+..)=0.00321 5 $I_{\gamma}$ : corrected for contributions from unresolved lines in <sup>195</sup>Hg and <sup>197</sup>Au (1983He14). It is possible that $I_{\gamma}(278\gamma)=220$ of 1983Gu05 were also affected by such impurities. Placement is based on the scheme of 1983He14. Mult.: stretched quadrupole from $A_2=0.27$ 2; $A_4 = -0.01 \ 3 \ (1983 He14)$ . But mult=E1 deduced from ce(K)(278)/ce(K)(223) in the spectra in coin with 96 $\gamma$ and K/L=5 (1983Gu05). 300.5 2 12 4 2359.03 $(8^{-})$ 2058.54 (6)- $I_{\gamma}$ : derived from the coincidence data (1983He14). 301.5 2 35 7 2058.54 $(6)^{-}$ 1757.09 5- $I_{\gamma}$ : derived from the coincidence data (1983He14). 1983He14 find mutually coincidence $300.5\gamma$ and $301.5\gamma$ , but neither transition occurs In coincidence with the $84\gamma$ . 386.3 1 148 12 3697.2 $(15^{-})$ 3310.9 (13<sup>-</sup>) E2 0.0520 $\alpha(K)=0.0347$ 5; $\alpha(L)=0.01311$ 19; $\alpha(M)=0.00328$ 5; $\alpha$ (N+..)=0.000964 14 I<sub> $\gamma$ </sub>: I $\gamma$ =130 relative to 426 $\gamma$ As 1000, $\gamma$ ray not placed In level scheme (1981Kr04). Mult.: from A<sub>2</sub>=0.34 *l*; A<sub>4</sub>=-0.06 2 (1983He14). 404.6 1 240 20 2843.6 $(14^{+})$ 2439.0 $(12^{+})$ E2 0.0460 $\alpha(K)=0.0312$ 5; $\alpha(L)=0.01120$ 16; $\alpha(M)=0.00279$ 4; α(N+..)=0.000822 12 $E_{\gamma}$ : 1974Pr13 placed 405 $\gamma$ from 12<sup>+</sup> to 10<sup>+</sup>. Mult.: from $A_2=0.33$ 1; $A_4=-0.06$ 2 (1983He14). A<sub>2</sub>=0.6 2 (1974Pr13). 411.9 2 53 10 4388.0 $(19^{-})$ 3976.1 $(17^{-})$ E2 0.0439 $\alpha(K)=0.0299$ 5; $\alpha(L)=0.01054$ 15; $\alpha(M)=0.00262$ 4; α(N+..)=0.000773 11 I<sub> $\gamma$ </sub>: I $\gamma$ =90 relative to 426 $\gamma$ As 1000, $\gamma$ ray not placed In level scheme (1981Kr04). $I_{\gamma}$ : derived from the coincidence data (1983He14). Mult.: A<sub>2</sub>=0.31 2; A<sub>4</sub>=-0.05 3 both contains 40% contribution from the 411.8 $\gamma$ 2<sup>+</sup> to 0<sup>+</sup> transition in <sup>198</sup>Hg (1983He14). $0.0 \quad 0^+$ 426.0 1 1000 426.00 $2^{+}$ E2 0.0402 $\alpha(K)=0.0278$ 4; $\alpha(L)=0.00943$ 14; $\alpha(M)=0.00234$ 4; α(N+..)=0.000690 10 Mult.: from $A_2=0.21 I$ ; $A_4=-0.04 2$ (1983He14). Others: A2=0.26 2 (1984Go06), A2=0.48 10 (1974Pr13). $I_{(\gamma+ce)}$ : 1000 (2006Le06). x441.7 2 17 2 D+Q Mult.: from $A_2 = -0.61$ 7; $A_4 = -0.32$ 13 (1983He14). 21 2 2553.8 0.0338 $\alpha(K)=0.0238$ 4; $\alpha(L)=0.00755$ 11; $\alpha(M)=0.00187$ 456.0 2 $(10^{-})$ 2097.8 $(8^{-})$ E2

## <sup>196</sup>Pt( $\alpha$ ,4n $\gamma$ ), <sup>197</sup>Au(d,3n $\gamma$ ) **1983He14,1981Kr04,1974Pr13** (continued)

# $\gamma$ (<sup>196</sup>Hg) (continued)

| $E_{\gamma}^{\dagger}$          | $I_{\gamma}^{\dagger}$ | E <sub>i</sub> (level)      | $\mathbf{J}_i^{\pi}$                                          | $E_f$                         | $\mathbf{J}_f^{\pi}$                    | Mult. <sup>‡</sup> | α <b>#</b> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------|------------------------|-----------------------------|---------------------------------------------------------------|-------------------------------|-----------------------------------------|--------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 468.5 2<br>477.6 1              | 12 2<br>440 <i>40</i>  | 3976.1<br>2262.81           | (17 <sup>-</sup> )<br>(8 <sup>+</sup> )                       | 3507.5<br>1785.21             | (16 <sup>+</sup> )<br>(6 <sup>+</sup> ) | E2                 | 0.0301     | 3; $\alpha$ (N+)=0.000551 8<br>Mult.: from A <sub>2</sub> =0.23 5; A <sub>4</sub> =-0.15 7 (1983He14).<br>This interband transition has not been detected in<br>other even-A Hg nuclei (1983He14).<br>$\alpha$ (K)=0.0215 3; $\alpha$ (L)=0.00652 10;<br>$\alpha$ (M)=0.001607 23; $\alpha$ (N+)=0.000475 7<br>Mult.: form A <sub>2</sub> =0.23 1; A <sub>4</sub> =-0.05 2 (1983He14).<br>Others: A <sub>2</sub> =0.26 4 (1980Kr21), A <sub>2</sub> =0.56 15<br>(1974Pr13).<br>I <sub>y</sub> : 723 $\gamma$ /478g=44(5)/32(4) (1980Kr21); I <sub>Y</sub> =400<br>(1981Kr04) I <sub>Y</sub> =260 30 (1974Pr13) |
| 489.3 2<br>517.6 2<br>556.2 1   | 11 2<br>15 2<br>220 20 | 2553.8<br>2359.03<br>2620.6 | (10 <sup>-</sup> )<br>(8 <sup>-</sup> )<br>(11 <sup>-</sup> ) | 2064.42<br>1841.41<br>2064.42 | 9-<br>7-<br>9-                          | E2                 | 0.0209     | Mult.: $A_2=0.17$ 6; $A_4=-0.05$ 9 (1983He14).<br>$\alpha(K)=0.01551$ 22; $\alpha(L)=0.00411$ 6;<br>$\alpha(M)=0.001002$ 14; $\alpha(N+)=0.000297$ 5<br>$I_{\gamma}$ : other: $I_{\gamma}=190$ relative to 426 $\gamma$ (1981Kr04).<br>$I_{\gamma}=70$ 20 (1974Pr13).<br>Mult.: from $A_2=0.31$ 1; $A_4=-0.07$ 2 (1983He14).                                                                                                                                                                                                                                                                                   |
| 558.5 2                         | 67 6                   | 3402.1?                     | (*)                                                           | 2843.6                        | (14+)                                   | E2                 | 0.0207     | A <sub>2</sub> =0.6 2 (1974Pr13).<br>$\alpha(K)$ =0.01538 22; $\alpha(L)$ =0.00406 6;<br>$\alpha(M)$ =0.000990 14; $\alpha(N+)$ =0.000293 5<br>Mult.: from A <sub>2</sub> =0.30 4; A <sub>4</sub> =-0.16 6 (1983He14).<br>Sidefeeding transition populating positive-parity                                                                                                                                                                                                                                                                                                                                    |
| 570.6 2                         | 19 2                   | 2929.6                      | (10 <sup>-</sup> )                                            | 2359.03                       | (8 <sup>-</sup> )                       | E2                 | 0.0197     | band.<br>$\alpha(K)=0.01470\ 21;\ \alpha(L)=0.00381\ 6;$<br>$\alpha(M)=0.000929\ 13;\ \alpha(N+)=0.000275\ 4$<br>Mult.: from A <sub>2</sub> =0.32 5; A <sub>4</sub> =-0.01 7 (1983He14).                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <sup>x</sup> 575.8 2<br>635.5 1 | 11 2<br>990 80         | 1061.50                     | 4+                                                            | 426.00                        | 2+                                      | E2                 | 0.01546    | $\alpha$ (K)=0.01176 <i>17</i> ; $\alpha$ (L)=0.00281 <i>4</i> ;<br>$\alpha$ (M)=0.000680 <i>10</i> ; $\alpha$ (N+)=0.000202 <i>3</i><br>Mult.: from A <sub>2</sub> =0.18 <i>2</i> ; A <sub>4</sub> =-0.07 <i>3</i> (1983He14).<br>Others: A <sub>2</sub> =0.30 <i>2</i> (1984Go06); A <sub>2</sub> =0.45 <i>10</i><br>(1974Pr13).<br>I <sub><math>\gamma</math></sub> : others: I $\gamma$ =950 (1981Kr04); 810 <i>50</i><br>(1984Go06); 880 <i>40</i> (1974Pr13).<br>I <sub>(<math>\gamma</math>+cc)</sub> : 801 <i>9</i> (2006Le06).                                                                        |
| x647.7 2<br>650.5 2             | 10 2<br>24 2           | 5038.5                      | (21 <sup>-</sup> )                                            | 4388.0                        | (19 <sup>-</sup> )                      | E2                 | 0.01468    | $\alpha(K)=0.01122 \ 16; \ \alpha(L)=0.00264 \ 4; \ \alpha(M)=0.000637 \ 9; \ \alpha(N+)=0.000190 \ 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <sup>x</sup> 659.0 2<br>663.8 2 | 15 2<br>78 7           | 3507.5                      | (16+)                                                         | 2843.6                        | (14+)                                   | E2                 | 0.01405    | Mult.: $A_2=0.17$ 6; $A_4=-0.01$ 9 (1983He14).<br>$\alpha(K)=0.01077$ 15; $\alpha(L)=0.00250$ 4;<br>$\alpha(M)=0.000603$ 9; $\alpha(N+)=0.000179$ 3<br>$I_{\gamma}$ : 70 relative to 426 $\gamma$ As 1000 (1981Kr04).                                                                                                                                                                                                                                                                                                                                                                                          |
| 682.8 2                         | 18 2                   | 3236.6                      | (12 <sup>-</sup> )                                            | 2553.8                        | (10 <sup>-</sup> )                      | E2                 | 0.01321    | Mult.: from $A_2=0.31$ 2; $A_4=-0.06$ 3 (1983He14).<br>$\alpha(K)=0.01017$ 15; $\alpha(L)=0.00232$ 4;<br>$\alpha(M)=0.000558$ 8; $\alpha(N+)=0.0001660$ 24                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 690.3 <i>1</i>                  | 180 <i>15</i>          | 3310.9                      | (13 <sup>-</sup> )                                            | 2620.6                        | (11-)                                   | E2                 | 0.01290    | Mult.: from A <sub>2</sub> =0.30 5; A <sub>4</sub> =0.01 7 (1983He14).<br>$\alpha$ (K)=0.00995 14; $\alpha$ (L)=0.00225 4;<br>$\alpha$ (M)=0.000541 8; $\alpha$ (N+)=0.0001612 23<br>I <sub><math>\gamma</math></sub> : I $\gamma$ =90 relative to 426 $\gamma$ As 1000, $\gamma$ ray not<br>placed In level scheme (1981Kr04).<br>Mult.: from A = 0.26 2; A = 0.05 2 (1002H 14)                                                                                                                                                                                                                               |
| 695.6 <i>1</i>                  | 490 40                 | 1757.09                     | 5-                                                            | 1061.50                       | 4+                                      | D                  | 0.00380    | Mult.: from $A_2=0.36$ 2; $A_4=-0.05$ 3 (1983He14).<br>$\alpha=0.00380; \alpha(L)=0.00058$<br>$I_{\gamma}$ : $I_{\gamma}=390$ 50 (1984Go06); 410 40 (1974Pr13).<br>$I_{(\gamma+ce)}$ : 372 6(2006Le06).                                                                                                                                                                                                                                                                                                                                                                                                        |

|                        |                        | 1                      | <sup>196</sup> <b>Pt</b> (α <b>,4n</b> | γ), <sup>197</sup> Au( | <b>d,3n</b> γ)       | 1983He14,1981Kr04,1974Pr13 (continued) |            |                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|------------------------|------------------------|------------------------|----------------------------------------|------------------------|----------------------|----------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                        |                        |                        |                                        |                        |                      |                                        |            |                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$                   | $E_f$                  | $\mathbf{J}_f^{\pi}$ | Mult. <sup>‡</sup>                     | α <b>#</b> | Comments                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                        |                        |                        |                                        |                        |                      |                                        |            | Mult.: $A_2 = -0.20 2$ ; $A_4 = 0.02 3$ (1983He14).<br>$A_2 = -0.08 1$ (1984Go06). $A_2 = -0.11 15$ (1974Pr13).                                                                                                                                                                                                                                                          |  |  |
| 714.1 <sup>@</sup> 2   | 12 2                   | 2977?                  | (+)                                    | 2262.81                | (8+)                 | (E2)                                   | 0.01200    | $\alpha(K)=0.00930 \ 13; \ \alpha(L)=0.00206 \ 3; \ \alpha(M)=0.000404 \ 7; \ \alpha(N)=0.0001472 \ 21$                                                                                                                                                                                                                                                                  |  |  |
|                        |                        |                        |                                        |                        |                      |                                        |            | Mult.: from $A_2=0.32$ 6; $A_4=0.00$ 9 (1983He14).<br>Sidefeeding transition populating positive-parity band.                                                                                                                                                                                                                                                            |  |  |
| 723.7 1                | 480 <i>40</i>          | 1785.21                | (6 <sup>+</sup> )                      | 1061.50                | 4+                   | E2                                     | 0.01166    | $\alpha$ (K)=0.00905 <i>13</i> ; $\alpha$ (L)=0.00199 <i>3</i> ;<br>$\alpha$ (M)=0.000477 <i>7</i> ; $\alpha$ (N+)=0.0001421 <i>20</i><br>Mult.: A <sub>2</sub> =0.23 <i>1</i> ; A <sub>4</sub> =-0.03 <i>2</i> (1983He14).<br>A <sub>2</sub> =0.43 <i>8</i> (1984Go06). Others: A <sub>2</sub> =0.31 <i>4</i><br>(1980Kr21), A <sub>2</sub> =0.50 <i>15</i> (1974Pr13). |  |  |
| 760.6 2                | 18 2                   | 3199.6?                | · (+)                                  | 2439.0                 | (12+)                | D+Q                                    |            | I <sub>γ</sub> : others: $1\gamma$ =430 (1981Kr04); 250 40<br>(1984Gu06); 320 30 (1974Pr13).<br>I <sub>(γ+ce)</sub> : 170 3(2006Le06).<br>Mult.: from A <sub>2</sub> =-0.80 11; A <sub>4</sub> =0.54 13<br>(1983He14).<br>Sidefeeding transition populating positive-parity                                                                                              |  |  |
| 813.6 2                | 29 <i>3</i>            | 4321.1                 | (18+)                                  | 3507.5                 | (16 <sup>+</sup> )   | E2                                     | 0.00913    | band.<br>$\alpha(K)=0.00719 \ 10; \ \alpha(L)=0.001479 \ 21;$<br>$\alpha(M)=0.000352 \ 5; \ \alpha(N+1)=0.0001052 \ 15$                                                                                                                                                                                                                                                  |  |  |
| 840.7 2                | 19 2                   | 3684.3?                | · (+)                                  | 2843.6                 | (14+)                | D+Q                                    |            | Mult.: from $A_2=0.31$ 3; $A_4=-0.06$ 4 (1983He14).<br>Mult.: from $A_2=-0.98$ 3; $A_4=0.23$ 6 (1983He14).<br>Sidefeeding transition populating positive-parity                                                                                                                                                                                                          |  |  |
| 853.7 2                | 32 3                   | 3697.2                 | (15 <sup>-</sup> )                     | 2843.6                 | (14+)                | (E1)                                   | 0.00308    | band.<br>$\alpha(K)=0.00258 \ 4; \ \alpha(L)=0.000389 \ 6;$<br>$\alpha(M)=8.93\times10^{-5} \ 13; \ \alpha(N+)=2.68\times10^{-5} \ 4$<br>This interband transition has not been detected in other even-A Hg nuclei (1983He14).                                                                                                                                           |  |  |
| <sup>x</sup> 877.9 2   | 13 2                   |                        |                                        |                        |                      |                                        |            | Mult.: from $A_2 = -0.34 5$ ; $A_4 = 0.05 7$ (1983He14).                                                                                                                                                                                                                                                                                                                 |  |  |
| 948.1 <sup>@</sup> 2   | 20 2                   | 3792?                  | (15 <sup>+</sup> )                     | 2843.6                 | (14 <sup>+</sup> )   | D+Q                                    |            | Mult.: from A <sub>2</sub> =-0.55 <i>5</i> ; A <sub>4</sub> =-0.06 <i>9</i> (1983He14).<br>Sidefeeding transition populating positive-parity<br>band.                                                                                                                                                                                                                    |  |  |

<sup>†</sup> From 1983He14. Relative photon intensities are from the ( $\alpha$ ,4n $\gamma$ ) E=48.6 MeV reaction at  $\theta$ =125°, relative to 426 $\gamma$ .

<sup> $\ddagger$ </sup> Inferred from angular distributions (1983He14) with the assumption that Q=E2.

<sup>#</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

<sup>@</sup> Placement of transition in the level scheme is uncertain.

<sup>*x*</sup>  $\gamma$  ray not placed in level scheme.



## <sup>196</sup>Pt(α,4nγ), <sup>197</sup>Au(d,3nγ) 1983He14,1981Kr04,1974Pr13



<sup>196</sup><sub>80</sub>Hg<sub>116</sub>