¹⁹⁸Hg(pol d,α) **2004Wi08**

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Huang Xiaolong	NDS 108, 1093 (2007)	1-Jan-2006				

E=18 MeV. Measured $E(\alpha)$ with a focal plane detector, which consisted of an array of single-wire proportional detectors with an additional cathode readout structure followed by a plastic scintillator for particle identification. Outgoing α particles were momentum seperated by the Q3D magnetic spectrograph. The spectrograph has a solid angle of acceptance of up to 11 msr. For the extended (pol d, α) experiment, a new focal plane detector, which is usable at higher beam currents, was used. It is a position-sensitive proportional counter with a single-strip readout of a cathode foil and $\Delta E/E_{rest}$ particle identification. The beam was stopped in a Faraday cup, and the current was integrated to enable measurements of absolute differential cross sections. Data were obtained for 8 scattering angles between 10° and 50°. FWHM=8 keV. DWBA analysis performed. $\sigma(\theta)$ and $A_y(\theta)$ plots can be found in the on-line appendix.

¹⁹⁶Au Levels

Cross-section measurements were made at 20° to the deuteron beam.

E(level)	$J^{\pi \ddagger}$	L [†]	Comments
0.0	2-	1+3	S: 0.0149 for L=1; 0.0181 for L=3. $d\sigma/d\Omega=12.8 \ \mu b/sr.$
41.8 5	$0^{-}, 1^{-}$	1	S: 0.0144 for L=1, J=0; 0.0086 for L=1, J=1.
84.5 4	5+	4+6	$d\sigma/d\Omega = 1.0 \ \mu 0/st.$ S: 0.0084 for L=4; 0.0029 for L=6. $d\sigma/d\Omega = 2 \ \mu b/sr.$
166.6 5	2^{-}	1+3	3300000000000000000000000000000000000
197.6 7	(1)	1,0+2	S: 0.0032 for L=1, J=1 ⁻ ; 0.0022 for L=0, J=1 ⁺ ; 0.0009 for L=2, J=1 ⁺ . $d\sigma/d\Omega=0.8 \ \mu b/sr.$
212.7 5	4-	3+5	S: 0.0012 for L=3; 0.0283 for L=5. $d\sigma/d\Omega$ =3.8 μ b/sr.
233.8 6	(3 ⁻ ,5 ⁺)	3,4+6	S: 0.0014 for L=3, J=3 ⁻ ; 0.0015 for L=4, J=5 ⁺ ; 0.0030 for L=6, J=5 ⁺ . $d\sigma/d\Omega=0.5 \ \mu b/sr.$
253.0 5	(2 ⁺)	2	S: 0.0022 for L=2. $d\sigma/d\Omega=0.4 \ \mu b/sr.$
287.2 10	(2 ⁻)	1+3	S: 0.0008 for L=1; 0.0005 for L=3. $d\sigma/d\Omega=0.5 \ \mu b/sr.$
307.4 5	2-	1+3	3300057 for L=1; 0.0016 for L=3. $d\sigma/d\Omega=1.6 \mu/sr$
324.5 5	(1)	1,0+2	S: 0.0026 for L=1, J=1 ⁻ ; 0.0010 for L=0, J=1 ⁺ ; 0.0011 for L=2, J=1 ⁺ . $d\sigma/d\Omega=0.4 \ \mu b/sr.$ J^{π} : 1 ⁻ , 1 ⁺ in figure 15 of $d\sigma/d\Omega(\theta)$ within online appendix.
348.6 5	5+	4+6	S: 0.0378 for L=4; 0.0159 for L=6. $d\sigma/d\Omega=11.7 \ \mu b/sr.$
375.3 5	(3 ⁻)	3	S: 0.0030 for L=3. $d\sigma/d\Omega=1.5 \ \mu b/sr.$
388.4 6	$(2^-, 3^+)$	1,2+4	S: 0.0026 for L=1, J=2 ⁻ ; 0.0013 for L=2, J=3 ⁺ ; 0.0008 for L=4, J=3 ⁺ . $d\sigma/d\Omega=0.4 \ \mu/sr.$
404.1 5	4-	5	3330000000000000000000000000000000000
415.3 6	2-	1+3	3300066 for L=1; 0.0004 for L=3. $367/40=10 \mu/\text{sr}$
456.8 5	2^{-}	1+3	S: 0.0051 for L=1; 0.0004 for L=3. $d\sigma/d\Omega=0.9 \text{ wh/sr}$
467.6 5	(3 ⁺ ,4 ⁻)	2+4,3+5	S: 0.0021 for L=2, J=3 ⁺ ; 0.0081 for L=4, J=3 ⁺ ; 0.0012 for L=3, J=4 ⁻ ; 0.0109 for L=5, J=4 ⁻ . $d\sigma/d\Omega=2.1 \ \mu b/sr.$

Continued on next page (footnotes at end of table)

¹⁹⁸Hg(pol d, α) **2004Wi08** (continued)

¹⁹⁶Au Levels (continued)

E(level)	$J^{\pi \ddagger}$	L [†]	Comments	
491.1 5	2-	1+3	S: 0.0111 for L=1; 0.0024 for L=3.	
			$d\sigma/d\Omega=3.7 \ \mu b/sr.$	
502.3 6	(5^{+})	4+6	S: 0.0020 for L=4; 0.0117 for L=6.	
			$d\sigma/d\Omega = 1.7 \ \mu b/sr.$	
518.5 6	(2^{-})	1+3	S: 0.0010 for L=1; 0.0007 for L=3.	
			$d\sigma/d\Omega = 0.7 \ \mu b/sr.$	
544.1? 18			$d\sigma/d\Omega = 0.1 \ \mu b/sr.$	
569.0 6	2-	1+3	S: 0.0045 for L=1; 0.0010 for L=3.	
			$d\sigma/d\Omega = 1.6 \ \mu b/sr.$	
587.6 6	(2^{-})	1+3	S: 0.0040 for L=1; 0.0014 for L=3.	
			$d\sigma/d\Omega = 1.7 \ \mu b/sr.$	
596.0 7	(2)	1+3,2	S: 0.0029 for L=1, J=2 ⁻ ; 0.0007 for L=3, J=2 ⁻ ; 0.0040 for L=2, J=2 ⁺ .	
			$d\sigma/d\Omega = 1.1 \ \mu b/sr.$	
638.5 8	2-	1+3	S: 0.0051 for L=1; 0.0018 for L=3.	
(7 1 0 0	(a ± a+t)		$d\sigma/d\Omega = 2.2 \ \mu b/sr$.	
651.9 8	$(1^+, 5^+)$	2,6	S: 0.0025 for L=2, J=1 ⁺ ; 0.0118 for L=6, J=5 ⁺ .	
(21.1.2	2-		$d\sigma/d\Omega = 0.7 \ \mu b/sr.$	
6/1.1 /	3	3	S: 0.0036 for L=3.	
(92.5.0	4-	2.5	$d\sigma/d\Omega = 1.6 \ \mu b/sr.$	
683.5 9	4	3+5	S: 0.0015 for L=3; 0.0024 for L=5.	
706 1 9	2+	2 . 4	$u_0 / dz_2 = 1.0 \ \mu 0/st.$	
/00.1 8	3	2+4	3.0.0075101 L=2, 0.0122101 L=4.	
717 2 0	(5^{+})	1⊥6	$40/422 - 5.9 \mu 0/st$. S: 0.0022 for $1 - 4:$ 0.0179 for $1 - 6$	
/1/.2 9	(\mathbf{J})	470	$\frac{3}{4\sigma/40} = 18 \text{ where}$	
734 9 7	$(0^{-} 1^{-})$	1	$S = 0.0122 \text{ for } I = 1 = 1 = 0^{-1} \cdot 0.0060 \text{ for } I = 1 = 1^{-1}$	
151.77	(0,1)	1	$d\sigma/d\Theta = 0.8 \text{ m/sr}$	
749.1 7	2-	1+3	S: 0.014 for L=1: 0.00140 for L=3.	
,	-		$d\sigma/d\Omega = 4.7 \ \mu b/sr.$	
782.2 6	2-	1+3	S: 0.0010 for L=1; 0.0003 for L=3.	
			$d\sigma/d\Omega = 0.4 \ \mu b/sr.$	
			J^{π} : (2 ⁻) in figure 15 of $d\sigma/d\Omega(\theta)$ plot in online appendix.	
799.4 7	4-	3+5	S: 0.0044 for L=3; 0.0014 for L=5.	
			$d\sigma/d\Omega = 4.2 \ \mu b/sr.$	
816.3 6	(2^{-})	1+3	S: 0.0017 for L=1; 0.0008 for L=3.	
			$d\sigma/d\Omega = 1.0 \ \mu b/sr.$	
851.8 8	(3-,4-)	3,3+5	S: 0.0070 for L=3, J=3 ⁻ ; 0.0031 for L=3, J=4 ⁻ ; 0.0093 for L=5, J=4 ⁻ .	
			$d\sigma/d\Omega=3.8 \ \mu b/sr.$	
882.7 8	$(4^{-},5^{-})$	3+5,5	S: 0.0020 for L=3, J=4 ⁻ ; 0.0161 for L=5, J=4 ⁻ ; 0.0262 for L=5, J=5 ⁻ .	
			$d\sigma/d\Omega=3.5 \ \mu b/sr.$	
901.3 8	1-	1	S: 0.0124 tor L=1.	
			$d\sigma/d\Omega = 1.6 \ \mu b/sr.$	
			E(level): $2004W_{10}8$ assumed that this state was an unresolved doublet structure consisting of a 1 ⁻	
			state in (pol d, α) and an additional (3,4,5) ⁻ state, as in (pol d,t) data.	

[†] From $d\sigma/d\Omega(\theta)$ DWBA analysis.

[‡] Suggested by authors on basis of angular distributions and DWBA calculations. Natural parity states are populated by a single L transfer whereas unnatural parity states can be populated by two L-transfers. For both transfers, S=1 for the transferred pair of nucleons.