¹⁹⁶Au IT decay (9.6 h) 1967Wa02,1982Ha04

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Huang Xiaolong	NDS 108, 1093 (2007)	1-Jan-2006					

Parent: ¹⁹⁶Au: E=595.66 4; $J^{\pi}=12^{-}$; $T_{1/2}=9.6$ h 1; %IT decay=100.0

¹⁹⁶Au-%IT decay: Estimated from β decay systematics; branching by β decay is very small for 12⁻ to 9⁻ (log *ft*>12.8).

1967Wa02: source prepared by ¹⁹⁷Au(n,2n) with neutron filters to minimize secondary reactions; also ¹⁹⁶Pt(d,2n), 66% enriched ¹⁹⁶Pt, chem. Measured γ rays, Ice, $\gamma\gamma(\theta)$ at four angles, $ce\gamma(t)$.

1982Ha04: source prepared by ¹⁹⁸Pt(d,4n), E=34 MeV. Measured I $\gamma(\theta,t)$, NMR on oriented nuclei. Recoil implantation into Ni. Others: 1975ChYL, 1974ChXH, 1973Ba11, 1971Ro16, 1963Ka24, 1963Ti02, 1962Bo12, 1960Ka21, 1960De15, 1960Ad02, 1959Va14.

¹⁹⁶Au Levels

E(level) [†]	\mathbf{J}^{π}	T _{1/2} ‡	Comments
0.0	2-	6.1669 d 6	T _{1/2} : from 2001Li17. Others: 6.183 d <i>10</i> (1963Ik01),6.1 d <i>1</i> (1976HeZF), 6.1 d <i>1</i> (1963Ti02), 6.07 d <i>11</i> (1962Li03), 6.15 d <i>15</i> (1962Wa16), 6.17 d <i>5</i> (1962Bo12), 5.3 d <i>3</i> (1963Ka24), 5.6 d <i>1</i> (1960Ba63).
84.660 20	5+	8.1 s 2	$T_{1/2}$: others: 8.2 s 2 (1971Ro16), 7.4 s 6 (1972GIZX).
232.47 3	7+	1.65 ns 15	
370.15 3	$(6,7)^+$	<30 ns	
400.84 3	6+	<30 ns	
420.75 <i>3</i>	8+	2.0 ns 2	
595.66 4	12^{-}	9.6 h <i>1</i>	%IT=100
			$\mu = +5.72 \ 8 \ (1982\text{Ha}04)$
			μ : From g=+0.476 7 (1982Ha04). Others: μ =+5.35 20 (1971Ba94).
			T _{1/2} : weighted average of 9.7 h 3 (1960Ba63), 9.5 h 3 (1960Ka21), 9.7 h <i>I</i> (1962Bo12), 10.4 h <i>I</i> 0 (1963Ka24), 9.5 h 5 (1963Ti02), 9.5 h 2 (1982Ho04).

[†] From least-squares fit to $E\gamma$'s.

[‡] From 1967Wa02, except where noted.

$\gamma(^{196}\mathrm{Au})$

Iy normalization: Normalized from γ and conversion electron feeding to 84.66-keV level.

Ν

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger@}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	α ^{&}	$I_{(\gamma+ce)}^{@}$	Comments
19.92 <i>I</i>	≈0.0328 [#]	420.75	8+	400.84	6+	(E2)	1.177×10 ⁴	≈386	ce(L)/(γ +ce)=0.753 8; ce(M)/(γ +ce)=0.193 4; ce(N+)/(γ +ce)=0.0545 11 Mult.: L:M1:M2:M3:(N+O)=≈170:≤7:26:25:17; M1/E2<1.0 (1967Wa02).
30.71 <i>1</i>	2.59 [#]	400.84	6+	370.15	(6,7)+	M1	41.5	110	ce(L)/(γ+ce)=0.750 7; ce(M)/(γ+ce)=0.174 3; ce(N+)/(γ+ce)=0.0520 10 Mult.: L1:L2:L3:M1:(N+O)=67:11:<3:17:10; E2/M1<0.002 (1967Wa02).
50.57 2	<0.11 [#]	420.75	8+	370.15	(6,7)+	(E2)	118.8	<13.42	ce(L)/(γ+ce)=0.744 8; ce(M)/(γ+ce)=0.193 4; ce(N+)/(γ+ce)=0.0548 11 Mult.: L1:L2:L3:M=<1:4:5:3; M1/E2<0.4 (1967Wa02).
84.66 2	3.50 [#] 6	84.660	5+	0.0	2-	E3	327	1148 <i>11</i>	ce(K)/(γ+ce)=0.000882 <i>18</i> ; ce(L)/(γ+ce)=0.729 <i>8</i> ; ce(M)/(γ+ce)=0.207 <i>4</i> ; ce(N+)/(γ+ce)=0.0600 <i>12</i> α: E3 α(theory)'s mult. By 0.975 <i>10</i> (Cf. 1990Ne01). Mult.: K:L1:L2:L3:M2:M3:(M4+M5):(N+O)=<10:18:450:340: 100:85:6:65 (1967Wa02); α(exp)=240 <i>50</i> (1971Ro16). I _(γ+ce) : from I(γ+ce)=Ti(147γ+285γ+316γ). Σ Ice=1151. HF=160 wu, B(E3)=1.4×10 ⁻⁵ .
137.69 <i>3</i>	15 5	370.15	(6,7)+	232.47	7+	M1	2.91		$\alpha(K)=2.39$ 4; $\alpha(L)=0.400$ 6; $\alpha(M)=0.0928$ 13; $\alpha(N+)=0.0277$ 4 Multiply Kill 11 2:1 2:M=20.67; c2: c2:2: E2(M1 < 0.2 (1067)) = 0.22(1067) =
147.81 2	500	232.47	7+	84.660	5+	E2	1.107		Mult.: K:L1:L2:L3:M=30: \leq 7:<2:22; E2/M1<0.2 (1967 wa02). α (K)=0.346 5; α (L)=0.571 8; α (M)=0.1478 21; α (N+)=0.0423 6 Mult.: K:L1:L2:L3:M:(N+O)=160:25:165:110:100:25; M1/E2<0.03, A ₂ =-0.046 65 from $\gamma\gamma(\theta)$ supports E2 (1967 Wa02). B(E2)=0.23 from T _{1/2} : HF=0.030 wu.
168.37 2	90 5	400.84	6+	232.47	7+	M1	1.647		$\alpha(K)=1.353 \ 19; \ \alpha(L)=0.226 \ 4; \ \alpha(M)=0.0524 \ 8; \ \alpha(N+)=0.01561 \ 22$ Mult.: K:L1:L2:L3=90:15:2:<1.5; E2/M1<0.06 (1967Wa02).
174.91 2	5.04 [#] 9	595.66	12-	420.75	8+	M4	227	1149	ce(K)/(γ +ce)=0.266 5; ce(L)/(γ +ce)=0.524 8; ce(M)/(γ +ce)=0.158 3; ce(N+)/(γ +ce)=0.0475 10 α : M4 α (theory)'s mult. By 0.975 5 (Cf. 1990Ne01). Mult.: K:L1:L2:L3:M1:M3:(M4+M5):(N+O)=265:220:50:340:75: 110:13:70 (1967Wa02); α (exp)=250 40 (1971Ro16). Hf(M4)=0.23.

 $^{196}_{79}\mathrm{Au}_{117}$ -2

					196	¹⁹⁶ Au IT decay (9.6 h)		1967Wa02	2,1982Ha04	(continued)
γ ⁽¹⁹⁶ Au) (continued)										
${\rm E_{\gamma}}^{\dagger}$	Ι _γ ‡@	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	δ	a&	$I_{(\gamma+ce)}^{@}$	Comments
188.27 3	345# 12	420.75	8+	232.47	7+	M1+E2	+0.12 2	1.193 18	757 25	α(K)=0.978 <i>15</i> ; α(L)=0.1651 <i>24</i> ; α(M)=0.0384 <i>6</i> ; α(N+)=0.01143 <i>16</i> Mult.: K:L1:L3:M=340 <i>60</i> :60:2:15; E2/M1=0.05 +9-2 (1967Wa02). An intensity imbalance at the 232.5 level supports an E2 admixture. δ: from 1982Ha04. δ^2 <0.025 (1967Wa02). Hf(M1)=1.8×10 ⁴ , Hf(E2)=0.020.
^x 264.0 5 285.49 7	15 5 51 5	370.15	(6,7)+	84.660	5+	(E2)		0.1188		α (K)=0.0701 <i>10</i> ; α (L)=0.0367 <i>6</i> ; α (M)=0.00927 <i>13</i> ; α (N+)=0.00268 <i>4</i> Mult.: K:(L1+L2):L3=5 <i>1</i> :1.0 <i>3</i> :≤0.5; M1/E2<0.09 (1967Wa02).
316.19 5	34 <i>3</i>	400.84	6+	84.660	5+	M1+E2	>3	0.098 10		$\alpha(K)=0.064 \ 10; \ \alpha(L)=0.0257 \ 8; \ \alpha(M)=0.00642 \ 17; \ \alpha(N+)=0.00186 \ 6$ Mult.: K:(L1+L2):L3:M1=5 1:0.8 3:0.2:0.2; E2/M1=0.9 +8-3 (1967Wa02).

[†] The energies of γ transitions reported by 1967Wa02 have been adjusted upward by 40 eV normalizing to more recent values of standards.

[‡] From 1967Wa02.
[#] From intensity balance at each level, measured Ice and theoretical α.
[@] For absolute intensity per 100 decays, multiply by 0.087 3.
[&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

¹⁹⁶₇₉Au₁₁₇