¹⁹⁷Au(α,6nγ) **1978Li10**

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Huang Xiaolong and Kang Mengxiao	NDS 121, 395 (2014)	1-Mar-2014					

Target $J^{\pi}=3/2^+$.

E=76 MeV. Measured E γ , I γ , σ (E γ , θ), $\gamma\gamma$ -, $\alpha\gamma$ (t) coin, a- γ delay, and ce with Ge(Li) and Si(Li). Rotational bands analyzed. Others: 1974Ne16, 1976Di14, 1977LiZJ, 1977LiZG.

¹⁹⁵Tl Levels

All data are from 1978Li10, except as noted.

Similar to high-spin ¹⁹⁷Tl states excited by $(\alpha,4n\gamma)$: 1977LiZG and 1978Li10. For B(E2) ratios of crossover and cascade transitions in the 9/2⁻ band, see 1978Li10.

E(level) [#]	J ^π b	$T_{1/2}^{\&}$	Comments
0.0 [@]	$1/2^{+}$	1.16 [@] h.5	
383.6 3	$3/2^{+a}$		
482.7 [†] 5	9/2 ^{-a}	3.6 [@] s 4	
876.8 [†] 5	11/2 ^{-a}		
1190.0 [†] 5	13/2 ^{-a}		
1484.0 6	13/2- <i>a</i>		
1618.4 [†] 5	15/2 ^{-a}		
1924.0 6	17/2 ^{-a}		
2011.2 6	17/2 ^{-a}		Band assignment is based on B(E2) of crossover/cascade and relative population.
2037.0 [‡] 6	15/2+ ^a		
2212.7 [‡] 6	17/2+ ^a		
2469.8 [†] 6	19/2 ^{-a}		
2529.5 [‡] 6	19/2+ ^a		
2587.1 [†] 6	21/2 ^{-a}		
2840.6 [‡] 7	21/2+ ^a		
2860.7 [†] 6	23/2 ^{-a}		
3059.4 [†] 6	25/2 ^{-a}		
3156.7 [†] 7	27/2 ⁽⁻⁾ a		
3201.7 [‡] 7	23/2+ ^a		
3513.7 [‡] 7	25/2+ ^a		
3729.4 [‡] 7	27/2+ ^a		
3885.1 [‡] 8	29/2 ⁽⁺⁾ <i>a</i>		
4002.6 [‡] 9	31/2 ⁽⁺⁾ <i>a</i>		
4174.6 [‡] 10	33/2 ⁽⁺⁾ <i>a</i>		
4393.1 [‡] 10	35/2 ⁽⁺⁾ <i>a</i>		

^{\dagger} Band(A): h9/2 proton strongly coupled to oblate ¹⁹⁴Hg core. Authors Compare exp B(E2: crossover)/B(E2: cascade) with ¹⁹⁷Tl and theory.

[‡] Band(B): $\Delta J=1$ sequence built on $15/2^+$ three-particle configuration, consisting of π h9/2 + ν i13/2⁺ ν .

[#] From $E\gamma$ using least-squares fit to data.

[@] From Adopted Levels.

& $T_{1/2} \leq 3$ ns for members of $\pi = +$ and $\pi = -$ bands for J>9/2.

^{*a*} From $\gamma(\theta)$ measurements.

^b From Adopted Levels, except as noted.

$\gamma(^{195}{\rm Tl})$

All data are from 1978Li10, except as noted.

 \mathbf{b}

Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	δ&	α^{a}	Comments
^x 91.8 3	0.6 [‡] 3					(M1+E2)		9.7 13	$\alpha(K)=55; \alpha(L)=3.822; \alpha(M)=1.06; \alpha(N+)=0.2918$ $\gamma(\theta): A_2=-0.246; A_4=-0.059.$
97.3 <i>3</i>	0.7 [‡] 3	3156.7	27/2 ⁽⁻⁾	3059.4	$25/2^{-}$	(M1+E2) [@]		8.0 14	$\alpha(K)=44; \alpha(L)=2.9 17; \alpha(M)=0.7 5; \alpha(N+)=0.22 13$ $\gamma(\theta): A_{2}=-0.146; A_{4}=-0.059$
99.1 <i>3</i>	0.6 2	482.7	9/2-	383.6	3/2+	E3		156 4	$\alpha(\text{K})=0.565\ 12;\ \alpha(\text{L})=114\ 3;\ \alpha(\text{M})=32.4\ 8;\ \alpha(\text{N}+)=9.67$ 22 With a based on as ratios (195 ph decay) $\alpha(0)$: $\Lambda = 0.10$
									$I5; A_4 = +0.21 22.$
117.3 5	2.1‡ 7	2587.1	21/2-	2469.8	19/2-	(M1+E2) [@]		4.2 12	α (K)=2.5 20; α (L)=1.3 6; α (M)=0.34 16; α (N+)=0.10 5 Mult.: doublet $\gamma(\theta)$: A ₂ =-0.30 2, A ₄ =-0.01 3 for 117.3 γ + 117.5 γ .
117.5 5	1.3 [‡] 7	4002.6	31/2 ⁽⁺⁾	3885.1	29/2(+)	(M1+E2) [@]		4.2 12	α (K)=2.5 20; α (L)=1.3 6; α (M)=0.34 16; α (N+)=0.10 5 Mult.: doublet $\gamma(\theta)$: A ₂ =-0.30 2, A ₄ =-0.01 3 for 117.3 γ + 117.5 γ .
155.7 3	3.1 3	3885.1	29/2 ⁽⁺⁾	3729.4	27/2+	(M1+E2)		1.7 8	$\alpha(K)=1.1 \ 9; \ \alpha(L)=0.43 \ 10; \ \alpha(M)=0.11 \ 3; \ \alpha(N+)=0.033 \ 9 \ \gamma(\theta): \ A_2=-0.32 \ 3; \ A_4=-0.03 \ 5.$
172.0 <i>3</i>	2.7 3	4174.6	33/2 ⁽⁺⁾	4002.6	31/2 ⁽⁺⁾	(M1+E2) [@]		1.3 6	$\alpha(K)=0.97; \alpha(L)=0.305; \alpha(M)=0.07515; \alpha(N+)=0.0224$ $\gamma(\theta): A_{2}=-0.353; A_{4}=-0.025.$
175.7 <i>3</i>	10.4 10	2212.7	17/2+	2037.0	15/2+	M1+E2	0.13 5	1.71 3	$\alpha(\mathbf{K})=1.40\ 3;\ \alpha(\mathbf{L})=0.242\ 4;\ \alpha(\mathbf{M})=0.0567\ 10;\ \alpha(\mathbf{N}+)=0.0174\ 3$ $\gamma(\theta):\ A_2=-0.39\ 2;\ A_4=-0.02\ 3.$ $\delta:\ \text{from }\gamma(\theta).$
198.8 <i>3</i>	2.8 [‡] 7	3059.4	25/2-	2860.7	23/2-	(M1+E2) [@]		0.8 4	$\alpha(K)=0.65; \alpha(L)=0.1778; \alpha(M)=0.0444; \alpha(N+)=0.0132$
									$\gamma(\theta)$: $A_2 = -0.50$ 6; $A_4 = +0.01$ 9. δ : from $\gamma(\theta)$.
215.8 3	5.8 6	3729.4	27/2+	3513.7	25/2+	M1(+E2)	≤0.14	0.966 16	$\alpha(K)=0.790 \ 13; \ \alpha(L)=0.1352 \ 20; \ \alpha(M)=0.0316 \ 5; \ \alpha(N+)=0.00967 \ 14 \ \gamma(\theta): \ A_2=-0.35 \ 3; \ A_4=-0.01 \ 5. \ \delta; \ from \ \gamma(\theta)$
218.5 3	2.9 3	4393.1	35/2 ⁽⁺⁾	4174.6	33/2 ⁽⁺⁾	(M1+E2) [@]		0.6 4	$\alpha(K)=0.54; \alpha(L)=0.1274; \alpha(M)=0.03139; \alpha(N+)=0.0094217$
273.7 3	11.8 <i>15</i>	2860.7	23/2-	2587.1	21/2-	M1(+E2)	≤0.14	0.501 8	$\begin{array}{l} \gamma(\theta): A_2 = -0.39 \ /; \ A_4 = -0.02 \ I0. \\ \alpha(\mathbf{K}) = 0.410 \ 7; \ \alpha(\mathbf{L}) = 0.0696 \ I1; \ \alpha(\mathbf{M}) = 0.01626 \ 24; \\ \alpha(\mathbf{N}+) = 0.00498 \ 8 \\ \gamma(\theta): \ A_2 = -0.38 \ 4; \ A_4 = -0.01 \ 6. \\ \delta: \ \text{from } \gamma(\theta). \end{array}$
305.8 5	1.6 [‡] 8	1924.0	$17/2^{-}$	1618.4	15/2-	M1+E2	0.11 +3-4	0.369	$\alpha(K)=0.302$ 5; $\alpha(L)=0.0512$ 8; $\alpha(M)=0.01196$ 18;

¹⁹⁷ Au(α ,6n γ) 1978Li10 (continued)										
$\gamma(^{195}\text{Tl})$ (continued)										
E_{γ}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{\&}$	α^{a}	Comments		
311.4 5	10 3	2840.6	21/2+	2529.5 19/2+	M1+E2	0.23 5	0.341 8	$\begin{array}{l} \alpha(\mathrm{N}+)=0.00366\ 6\\ \gamma(\theta):\ \mathrm{A}_{2}=-0.04\ 4;\ \mathrm{A}_{4}=+0.01\ 6.\\ \delta:\ \mathrm{from}\ \gamma(\theta).\\ \alpha(\mathrm{K})=0.279\ 7;\ \alpha(\mathrm{L})=0.0480\ 9;\ \alpha(\mathrm{M})=0.01124\ 19;\\ \alpha(\mathrm{N}+)=0.00344\ 6\\ \gamma(\theta):\ \mathrm{A}_{2}=-0.54\ 5;\ \mathrm{A}_{4}=-0.01\ 8. \end{array}$		
312.3 5	6.4 20	3513.7	25/2+	3201.7 23/2+	M1+E2	0.27 6	0.334 9	δ: from $\gamma(\theta)$. $\alpha(K)=0.272 \ 8; \ \alpha(L)=0.0473 \ 9; \ \alpha(M)=0.01108 \ 20;$ $\alpha(N+)=0.00339 \ 7$ $\gamma(\theta): \ A_2=-0.64 \ 5: \ A_4=+0.02 \ 8$		
313.22 12	20 4	1190.0	13/2-	876.8 11/2-	M1+E2	0.38 10	0.317 <i>16</i>	δ: from γ(θ). α(K)=0.257 15; α(L)=0.0459 13; α(M)=0.0108 3; $ α(N+)=0.00329 9Eγ: from 1977CoZM (195Pb decay).$		
316.8 <i>3</i>	12.5 15	2529.5	19/2+	2212.7 17/2+	M1+E2	0.21 4	0.328 7	$\gamma(\theta): A_2 = -0.54 5; A_4 = -0.02 8.$ $\delta: \text{ from } \gamma(\theta).$ $\alpha(K) = 0.268 6; \alpha(L) = 0.0459 8; \alpha(M) = 0.01074 17;$ $\alpha(N+) = 0.00329 5$ $\gamma(\theta): A_2 = -0.51 3; A_4 = -0.01 5.$		
361.1 <i>3</i>	6.3 7	3201.7	23/2+	2840.6 21/2+	M1+E2	0.23 4	0.228 5	$\begin{aligned} \delta: & \text{from } \gamma(\theta). \\ \alpha(\text{K}) = 0.187 \ 4; \ \alpha(\text{L}) = 0.0319 \ 6; \ \alpha(\text{M}) = 0.00746 \ 12; \\ \alpha(\text{N}+) = 0.00228 \ 4 \\ \gamma(\theta): \ \text{A}_2 = -0.56 \ 3; \ \text{A}_4 = -0.03 \ 5. \end{aligned}$		
383.6 <i>3</i>	94 8	383.6	3/2+	0.0 1/2+	M1+E2	1.8 +4-3	0.090 11	δ: from $\gamma(\theta)$. $\alpha(K)=0.067 \ 10; \ \alpha(L)=0.0176 \ 10; \ \alpha(M)=0.00430 \ 22;$ $\alpha(N+)=0.00130 \ 7$		
302.8.5	16 [‡] 11	2011.2	17/2-	1618 / 15/2-	(M1 + E2)	0 42 13	0 168 12	δ: from K/L (1963Di10) ¹⁹⁵ Tl IT decay. $\gamma(\theta)$: A ₂ =0.00 2; A ₄ =-0.01 3. $\alpha(K)=0.137$ U: $\alpha(L)=0.0241$ U: $\alpha(M)=0.00565$ 24:		
392.8 3	4.01 11	2011.2	17/2	1018.4 15/2	(IVIT+L2)	0.42 15	0.108 12	$\alpha(N)=0.137$ <i>H</i> , $\alpha(L)=0.0241$ <i>H</i> , $\alpha(N)=0.00303$ 24, $\alpha(N+)=0.00173$ 8 Mult.: doublet $\gamma(\theta)$: A ₂ =-0.68 2, A ₄ =+0.01 3 for 392.8 γ +		
394.2 <i>3</i>	54 5	876.8	11/2-	482.7 9/2-	M1+E2	0.42 13	0.167 12	$\alpha(K)=0.136 \ 10; \ \alpha(L)=0.0239 \ 11; \ \alpha(M)=0.00560 \ 24; \ \alpha(N+)=0.00171 \ 8$ Mult.: doublet $\gamma(\theta)$: A ₂ =-0.68 2, A ₄ =+0.01 3 for 392.8 γ + 394 2 γ		
^x 402.1 3	1.9 [‡] 5				(M1+E2)		0.11 7	$\alpha(K)=0.09 \ 6; \ \alpha(L)=0.018 \ 6; \ \alpha(M)=0.0044 \ 13; \ \alpha(N+)=0.0013 \ 5$		
418.5 <i>3</i>	4.0 6	2037.0	15/2+	1618.4 15/2-	(E1)		0.01350	$\begin{array}{l} \gamma(\theta): \ A_2 = -0.48 \ 5; \ A_4 = +0.01 \ 8. \\ \alpha(K) = 0.01115 \ 16; \ \alpha(L) = 0.00180 \ 3; \ \alpha(M) = 0.000418 \ 6; \\ \alpha(N+) = 0.0001265 \ 18 \\ \gamma(\theta): \ A_2 = +0.29 \ 10; \ A_4 = -0.07 \ 15. \end{array}$		
428.6 <i>3</i>	10.7 [‡] 20	1618.4	15/2-	1190.0 13/2-	M1+E2	0.34 6	0.138 5	α (K)=0.113 4; α (L)=0.0195 5; α (M)=0.00455 11; α (N+)=0.00139 4		

ω

From ENSDF

 $^{195}_{81}\mathrm{Tl}_{114}\text{-}3$

						19	⁹⁷ Au(α,6nγ) 1978L	i10 (continued)	
γ ⁽¹⁹⁵ Tl) (continued)										
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [#]	$\delta^{\&}$	α^{a}	Comments	
458.7 <i>3</i>	15.0 20	2469.8	19/2-	2011.2	17/2-	M1+E2	0.75 15	0.092 9	$\gamma(\theta)$: A ₂ =-0.62 3; A ₄ =-0.04 5. δ : from $\gamma(\theta)$. $\alpha(K)$ =0.074 8; $\alpha(L)$ =0.0138 9; $\alpha(M)$ =0.00327 20; $\alpha(N+)$ =0.00100 7 $\gamma(\theta)$: A ₂ =-0.92 2; A ₄ =+0.08 3.	
472.3 <i>3</i>	1.8 6	3059.4	25/2-	2587.1	21/2-	E2		0.0323	δ: from $\gamma(\theta)$. $\alpha(\mathbf{K})=0.0227$ 4; $\alpha(\mathbf{L})=0.00724$ 11; $\alpha(\mathbf{M})=0.00180$ 3; $\alpha(\mathbf{N}+)=0.000539$ 8	
492.6 <i>3</i>	2.0 6	2529.5	19/2+	2037.0	15/2+	E2		0.0292	$\gamma(\theta)$: A ₂ =+0.46 <i>I1</i> ; A ₄ =0.00 <i>I7</i> . $\alpha(\mathbf{K})$ =0.0208 <i>3</i> ; $\alpha(\mathbf{L})$ =0.00634 <i>9</i> ; $\alpha(\mathbf{M})$ =0.001569 <i>23</i> ; $\alpha(\mathbf{N}+)$ =0.000472	
527.6 <i>3</i>	3.5 7	3729.4	27/2+	3201.7	23/2+	E2		0.0247	$\gamma(\theta)$: A ₂ =+0.20 <i>13</i> ; A ₄ =-0.11 <i>19</i> . $\alpha(K)$ =0.0179 <i>3</i> ; $\alpha(L)$ =0.00514 <i>8</i> ; $\alpha(M)$ =0.001266 <i>18</i> ; $\alpha(N+)$ =0.000381	
545.7 3	3.2 7	2469.8	19/2-	1924.0	17/2-	M1+E2	0.57 16	0.065 6	$\gamma(\theta)$: A ₂ =+0.30 7; A ₄ =-0.11 10. $\alpha(K)$ =0.053 5; $\alpha(L)$ =0.0093 7; $\alpha(M)$ =0.00217 15; $\alpha(N+)$ =0.00066 5 $\gamma(\theta)$: A ₂ =-0.82 10; A ₄ =+0.09 15.	
552.9 <i>3</i>	4.8 7	2037.0	15/2+	1484.0	13/2-	(E1)		0.00749	δ: from $\gamma(\theta)$. $\alpha(K)=0.00621 \ 9$; $\alpha(L)=0.000980 \ 14$; $\alpha(M)=0.000227 \ 4$; $\alpha(N+)=6.87 \times 10^{-5} \ 10$	
575.8 <i>3</i>	3.4 5	2587.1	21/2-	2011.2	17/2-	E2		0.0202	$\gamma(\theta)$: A ₂ =-0.23 7; A ₄ =-0.02 10. $\alpha(K)$ =0.01495 21; $\alpha(L)$ =0.00397 6; $\alpha(M)$ =0.000973 14; $\alpha(N+)$ =0.00029 5	
607.2 3	8.4 11	1484.0	13/2-	876.8	11/2-	M1+E2	0.66 19	0.047 6	$\gamma(\theta)$: A ₂ =+0.19 8; A ₄ =-0.05 12. $\alpha(K)$ =0.038 5; $\alpha(L)$ =0.0067 6; $\alpha(M)$ =0.00157 14; $\alpha(N+)$ =0.00048 4 $\gamma(\theta)$: A ₂ =-0.68 4; A ₄ =+0.06 6.	
627.7 3	5.1 8	2840.6	21/2+	2212.7	17/2+	E2		0.01663	δ: from $\gamma(\theta)$. $\alpha(K)=0.01253$ 18; $\alpha(L)=0.00311$ 5; $\alpha(M)=0.000757$ 11; $\alpha(N+)=0.00022$ 4	
663.1 <i>3</i>	8.1 9	2587.1	21/2-	1924.0	17/2-	E2		0.01474	$\gamma(\theta)$: A ₂ =+0.35 6; A ₄ =-0.12 9. $\alpha(K)$ =0.01121 16; $\alpha(L)$ =0.00268 4; $\alpha(M)$ =0.000649 10; $\alpha(N+)$ =0.00019	
672.3 5	<9.1	3201.7	23/2+	2529.5	19/2+	E2		0.01430	$\gamma(\theta)$: A ₂ =+0.30 4; A ₄ =-0.04 6. $\alpha(K)$ =0.01091 16; $\alpha(L)$ =0.00258 4; $\alpha(M)$ =0.000625 9; $\alpha(N+)$ =0.000189 I _y : doublet=9.1 11 (for 672.3 γ + 673.2 γ).	
673.2 5	<9.1	3513.7	25/2+	2840.6	21/2+	(E2)		0.01426	Mult.: doublet $\gamma(\theta)$: A ₂ =+0.30 4, A ₄ =-0.08 6 for 672.3 γ + 673.2 γ . $\alpha(K)$ =0.01088 16; $\alpha(L)$ =0.00257 4; $\alpha(M)$ =0.000623 9; $\alpha(N+)$ =0.000188 I _{γ} : doublet=9.1 11 (for 672.3 γ + 673.2 γ).	
707.2 3	36.0 28	1190.0	13/2-	482.7	9/2-	E2		0.01283	Mult.: doublet $\gamma(\theta)$: A ₂ =+0.30 4, A ₄ =-0.08 6 for 672.3 γ + 673.2 γ . $\alpha(K)$ =0.00987 14; $\alpha(L)$ =0.00226 4; $\alpha(M)$ =0.000545 8; $\alpha(N+)$ =0.000164 24	
733.9 <i>3</i>	12.2 12	1924.0	17/2-	1190.0	13/2-	E2		0.01186	$\gamma(\theta):$ A2=+0.29 2; A4=-0.07 3. $\alpha({\rm K}){=}0.00917$ 13; $\alpha({\rm L}){=}0.00205$ 3; $\alpha({\rm M}){=}0.000494$ 7; $\alpha({\rm N}{+}){=}0.0001492$ 21	
741.5 3	11.5 <i>11</i>	1618.4	15/2-	876.8	11/2-	E2		0.01161	$\begin{array}{l} \gamma(\theta): \ A_2 = +0.26 \ 4; \ A_4 = -0.09 \ 6. \\ \alpha(K) = 0.00899 \ 13; \ \alpha(L) = 0.00199 \ 3; \ \alpha(M) = 0.000480 \ 7; \ \alpha(N+) = 0.000145 \\ 21 \\ \gamma(\theta): \ A_2 = +0.28 \ 3; \ A_4 = -0.09 \ 5. \end{array}$	

4

From ENSDF

	¹⁹⁷ Au(α ,6n γ) 1978Li10 (continued)										
	$\gamma(^{195}\text{Tl})$ (continued)										
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α^{a}	Comments			
821.3 3	13.1 <i>21</i>	2011.2	17/2-	1190.0	13/2-	E2	0.00939	α (K)=0.00737 <i>11</i> ; α (L)=0.001542 <i>22</i> ; α (M)=0.000369 <i>6</i> ; α (N+)=0.0001118 <i>16</i> $\gamma(\theta)$: A ₂ =+0.32 <i>3</i> ; A ₄ =-0.07 <i>5</i> .			
847.1 5	20 7	2037.0	15/2+	1190.0	13/2-	(E1)	0.00326	$\alpha(\mathbf{K})=0.00272\ 4;\ \alpha(\mathbf{L})=0.000414\ 6;\ \alpha(\mathbf{M})=9.55\times10^{-5}\ 14;\ \alpha(\mathbf{N}+)=2.90\times10^{-5}\ 4$ $\gamma(\theta):\ \mathbf{A}_2=-0.15\ 5;\ \mathbf{A}_4=-0.01\ 8.$			
851.3 <i>3</i>	2.5 12	2469.8	19/2-	1618.4	15/2-	E2	0.00873	$\alpha(\mathbf{K})=0.00688 \ 10; \ \alpha(\mathbf{L})=0.001413 \ 20; \ \alpha(\mathbf{M})=0.000338 \ 5; \ \alpha(\mathbf{N}+)=0.0001023 \ 15 \ \gamma(\theta): \ \mathbf{A}_2=+0.42 \ 20; \ \mathbf{A}_4=-0.48 \ 30.$			

[†] Normalized to I(γ+ce)(383.6γ)=100.
[‡] Intensities determined from γ-γ coincidence experiment.
[#] Based on ¹⁹⁵Pb ε decay data, intensity balance considerations, and γ(θ).
[@] From γ(θ) and known Δπ.
[&] From γ(θ) A₂ and A₄: 1977LiZG, 1974Ne16, except as noted.

^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

 $^{195}_{81}\mathrm{Tl}_{114}$

6

 $^{195}_{81}\text{Tl}_{114}\text{-}6$

 197 Au(α ,6n γ) 1978Li10

	Band(B): Δ J=1 sequence built o 15/2 ⁺ three-particle configuration, consisting of π h9/2 + ν i13/2 ⁺ ν						
	35/2 ⁽⁺⁾		4393.1				
	33/2 ⁽⁺⁾	218	4174.6				
	31/2 ⁽⁺⁾	172	4002.6				
	29/2 ⁽⁺⁾	118	3885.1				
	27/2 ⁺	156	3729.4				
	25/2 ⁺	216	3513.7				
Band(A): h9/2 proton strongly coupled to oblate ¹⁹⁴ Hg core		312					
27/2 ⁽⁻⁾ 3156.7	<u>23/2</u> + 67	3	3201.7				
25/2- 97 3059.4							
<u>23/2</u> <u>2860.7</u> <u>472</u>	21/2+	361 • 672	2840.6				
274		311					
$\frac{21/2}{19/2^{-}} \qquad \frac{117}{19} \qquad 2469.8$	<u>19/2</u> + 62	8	2529.5				
576	17/2+	317 493	2212.7				
<u>17/2⁻ 851 2011.2</u>	15/2+	176	2037.0				
393							
<u>15/2</u> <u>821</u> <u>1618.4</u>							
429							
<u>13/2-742</u> 1190.0							
313							
<u>11/2</u> <u>876.8</u> 707							
394							
9/2- 482.7							

 $^{195}_{81}{\rm Tl}_{114}$