¹⁹⁴**Pt**(\mathbf{n}, γ) **E=thermal** 1987Ca03,1982Wa20

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Huang Xiaolong and Kang Mengxiao	NDS 121, 395 (2014)	1-Mar-2014

Others: 1967Gr24, 1968Sa13, 1970Or05. 1987Ca03: 194 Pt(n, γ) E=thermal; measured E(ce), Ice; U(6/12) supersymmetry analyses. 1982Wa20: 194 Pt(n, γ) E=thermal, 2 keV, 24 keV; measured E γ and I γ with curved spectrometers and Ge(Li); comparison with multi-J supersymmetry in interacting boson-fermion approximation.

Measured neutron binding energy 6105.3 5 (1982Wa20) is in good agreement with 6105.04 12 recommended in 2003Au03.

¹⁹⁵Pt Levels

Spin and parity assignments from the av resonance capture data (1982Wa20):

I(2 keV)/I(24 keV)	J^{π}	Comments
ratio of reduced primary γ -ray intensities		
≥ 0.5	1/2-,3/2-	
0.3 - 0.5	$1/2\pm, 3/2\pm$	
< 0.3	1/2+,3/2+	
0	$5/2^+, (5/2^-, 1/2^+, 3/2^+)$	for I(24 keV) > 30
0	5/2±	for I(24 keV) < 30

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{(0)}$	$I(2 \text{ keV})/I(24 \text{ keV})^{b}$	Comments
0.0&	1/2-	stable	1.00	
98.8839 ^{&} 16	3/2-		1.11	
129.782 4	5/2-			
199.5337& <i>17</i>	3/2-		1.61	
211.4064 ^{&} <i>19</i>	3/2-		1.18	
222.230 ^{&} 4	$1/2^{-}, 3/2^{-\#}$		0.62	
239.268 4	5/2-			
259.075 23	$13/2^{+}$			
389.137 3	5/2-			
419.704 ^{&} 3	3/2-		2.72	
431.981 23	9/2+			
455.276 ^{<i>a</i>} 7	5/2-		0	
507.920 8	5/2-,7/2-			
524.851 ^{&} 3	3/2-		0.92	
590.902 & 4	1/2 ⁻ ,3/2 ^{-#}		1.06	
630.146 <mark>&</mark> 7	$1/2^{-}, 3/2^{-\#}$		1.12	
664.207 6	5/2-,7/2-			
739.548 ^{&} 5	$1/2^{-}, 3/2^{-\#}$		1.79	
821.785 ^{<i>a</i>} 23	5/2+		0	J ^{π} : J ^{π} =5/2 ⁺ ,(5/2 ⁻ ,1/2 ⁺ ,3/2 ⁺) from av resonance capture measurements.
926.89 ^{&} 6	1/2 ⁻ ,3/2 ^{-#}		1.70	
1095.8 4	1/2-,3/2-#		0.70	
1122.596 ^{<i>a</i>} 23	-		0	J^{π} : $J^{\pi}=5/2^+, (5/2^-, 1/2^+, 3/2^+)$ from av resonance capture measurements.

¹⁹⁴Pt(n,γ) E=thermal **1987Ca03,1982Wa20** (continued)

¹⁹⁵Pt Levels (continued)

E(level) [†]	Jπ‡	I(2 keV)/I(24 keV) ^b	Comments
1132.402 ^{&} 20	1/2-,3/2-#	2.38	
1160.390 ^{&} 25	1/2 ⁻ ,3/2 ^{-#}	0.61	
1166.4 6	1/2 ⁺ ,3/2 ⁺ #	0.28	
1271.0 3	1/2 ⁻ ,3/2 ^{-#}	0.68	
1287.7 4	1/2 ⁻ ,3/2 ^{-#}	0.63	
1312.7 7	1/2 ⁺ ,3/2 ⁺ #	0.18	
1320.8 7	1/2 ⁻ ,3/2 ^{-#}	0.68	
1334.7 4	1/2 ⁻ ,3/2 ^{-#}	0.74	
1346.9 6	1/2,3/2 [#]	0.32	
1372.7 4	1/2 ⁻ ,3/2 ^{-#}	0.61	
1411.1 5	1/2 ⁻ ,3/2 ^{-#}	0.68	
1425.0 5	1/2 ⁻ ,3/2 ^{-#}	0.68	
1438.3 4	1/2,3/2 [#]	0.33	
1445.3 5	1/2 ⁻ ,3/2 ^{-#}	0.54	
(6109.1 9)	1/2+		E(level): thermal neutron binding energy deduced from thermal, 2- and 24-keV neutron capture measurements (1982Wa20), but no primary y-rays from thermal neutron capture are given by 1982Wa20.

 γ -rays from thermal neutron capture are J^{π} : from s-wave thermal neutron capture.

[†] From authors' values: E(level) values for the 129- and 1095-levels and the levels above 1160 are from 2- and 24-keV average resonance neutron capture measurements.

[‡] From Adopted Levels, except as noted.

[#] From average resonance neutron capture measurements: ratio of reduced primary intensities observed in 2 and 24 keV.

[@] From Adopted Levels.

[&] Populated also in the average resonance capture (E=2, 24 keV).

^a From 24-keV average resonance neutron capture only.

^b Ratio of reduced primary γ intensities observed in 2- and 24-keV average resonance neutron capture. The intensity of γ ray was divided by the fifth power of the γ energy.

$\frac{194 \operatorname{Pt}(\mathbf{n}, \gamma) \operatorname{E=thermal}}{1987 \operatorname{Ca03,1982Wa20}} $ (continued)														
	γ ⁽¹⁹⁵ Pt)													
${\rm E_{\gamma}}^{\dagger}$	$\frac{E_{\gamma}^{\dagger}}{22} = \frac{I_{\gamma}^{\ddagger}}{522} = \frac{E_{i}(\text{level})}{522} = \frac{J_{i}^{\pi}}{22} = \frac{E_{f}}{22} = \frac{J_{f}^{\pi}}{122} = \frac{Mult.^{\&}}{22} = \frac{\delta^{\&}}{22} = \frac$													
98.886 2	599 60	98.8839	3/2-	0.0	1/2-	M1(+E2)	<0.17	6.86	$\alpha(L1)\exp=1.16 \ 11; \ \alpha(L2)\exp=0.15 \ 15 \ (1987Ca03)$ $\alpha(K)=5.59 \ 11; \ \alpha(L)=0.98 \ 4; \ \alpha(M)=0.227 \ 10;$					
100.652 <i>3</i>	131 <i>13</i>	199.5337	3/2-	98.8839	3/2-	M1(+E2)	<0.17	6.52	$\alpha(N+) = 0.0675$ $\alpha(L1)\exp=1.0914; \ \alpha(M1)\exp=0.2523 \ (1987Ca03)$ $\alpha(K) = 5.3110; \ \alpha(L) = 0.934; \ \alpha(M) = 0.2159;$					
123.337 10	130 <i>13</i>	222.230	1/2-,3/2-	98.8839	3/2-	M1(+E2)	<0.32	3.59 9	α (N+.)=0.0034 25 α (L1)exp=0.42 16 (1987Ca03) α (K)=2.89 13; α (L)=0.53 4; α (M)=0.124 10;					
140.385 9	115 <i>16</i>	239.268	5/2-	98.8839	3/2-	M1(+E2)	<0.62	2.36 18	$\alpha(N+)=0.036\ 3$ $\alpha(L1)\exp=0.32\ 28;\ \alpha(L2)\exp=0.30\ 24\ (1987Ca03)$ $\alpha(K)=1.85\ 24;\ \alpha(L)=0.39\ 5;\ \alpha(M)=0.092\ 13;$ $\alpha(L)=0.097\ 4$					
172.906 <i>3</i>	505 <i>51</i>	431.981	9/2+	259.075	13/2+	E2		0.596	α (N+)=0.027 4 α (K)exp=0.22 16; α (L1)exp=0.054 21; α (L2)exp=0.19 12 (1987Ca03) α (K)=0.244 4; α (L)=0.265 4; α (M)=0.0680 10; α (N+)=0.0193 3 Mult.: M=E2(+M1) with δ >2.0 (1987Ca03). But γ to					
197.479 <i>14</i>	50 9	419.704	3/2-	222.230	1/2-,3/2-	M1(+E2)	<1.9	0.74 24	13/2 ⁺ rules out (M1) component (evaluator). δ: δ >2.24 (1987Ca03). α (K)exp=0.60 51 (1987Ca03) α (K)=0.55 25; α (L)=0.139 8; α (M)=0.033 4;					
199.533 2	265 26	199.5337	3/2-	0.0	1/2-	M1(+E2)	<0.40	0.90 5	$\alpha(N+)=0.0097 \delta$ $\alpha(K)\exp=0.82 \ 11; \ \alpha(L)\exp=0.13 \ 17 \ (1987Ca03)$ $\alpha(K)=0.73 \ 5; \ \alpha(L)=0.1285 \ 22; \ \alpha(M)=0.0299 \ 7;$ $\alpha(N+)=0.00880 \ 18$					
211.407 2	1000	211.4064	3/2-	0.0	1/2-	M1+E2	0.38 3	0.737 14	α (K)exp=0.614 5 (1987Ca03) α (K)=0.595 13; α (L)=0.1089 16; α (M)=0.0255 4; α (N+)=0.00749 11					
216.012 9	52 6	455.276	5/2-	239.268	5/2-	M1(+E2)	<0.6	0.69 7	δ: from β ⁻ decay. Other: M1+(12%E2) (1987Ca03). α (K)exp=0.61 25 (1987Ca03) α (K)=0.56 7; α (L)=0.1022 15; α (M)=0.0239 5; α (N+)=0.00702 12					
222.230 5	64 8	222.230	1/2-,3/2-	0.0	1/2-	M1(+E2)	<0.54	0.65 5	$\alpha(K) = 0.57 \ 20 \ (1987Ca03)$ $\alpha(K) = 0.52 \ 5; \ \alpha(L) = 0.0940 \ 14; \ \alpha(M) = 0.0220 \ 4;$ $\alpha(K) = 0.52 \ 5; \ \alpha(L) = 0.0945 \ 10$					
239.261 5	215 22	239.268	5/2-	0.0	1/2-	E2		0.198	α (IN+)=0.00045 <i>IU</i> α (K)exp=0.13 <i>22</i> (1987Ca03) α (K)=0.1080 <i>I6</i> ; α (L)=0.0682 <i>I0</i> ; α (M)=0.01729 <i>25</i> ; α (N+)=0.00492 <i>7</i> δ : E2(+ (6 + <i>10</i> -6)%M1). Mult.: E2(+M1) with δ >2.3, but Δ J=2 rules out M1 (evaluator).					
243.855 14	45 5	455.276	5/2-	211.4064	3/2-	M1(+E2)	0.37 +54-37	0.50 12	α (K)exp=0.40 25 (1987Ca03) α (K)=0.40 12; α (L)=0.072 4; α (M)=0.0167 4;					

ω

 $^{195}_{78}\text{Pt}_{117}\text{-}3$

$\frac{194}{\text{Pt}(n,\gamma)} \text{ E=thermal} \qquad 1987\text{Ca03,1982Wa20} \text{ (continued)}$										
γ ⁽¹⁹⁵ Pt) (continued)										
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	${ m J}^{\pi}_i$	E_{f}	\mathbf{J}_f^{π}	Mult. ^{&}	$\delta^{\&}$	α ^{<i>a</i>}	Comments	
					<u>_</u>				α (N+)=0.00491 <i>16</i> δ : M1(⁺ (14 +29- <i>14</i>)%E2).	
255.741 <i>30</i> 259.351 6	39 5 105 <i>12</i>	455.276 389.137	5/2 ⁻ 5/2 ⁻	199.5337 129.782	3/2 ⁻ 5/2 ⁻	M1(+E2)	<0.5	0.42 3	α (K)exp=0.41 23 (1987Ca03) α (K)=0.35 3; α (L)=0.0602 15; α (M)=0.0140 3; α (N+)=0.00412 9	
285.578 4	60 7	524.851	3/2-	239.268	5/2-	(M1+E2)	<0.72	0.31 4	$\alpha(K)=0.25 4$; $\alpha(L)=0.0448 23$; $\alpha(M)=0.0105 5$; $\alpha(N+)=0.00308 14$ $\alpha(K)\exp=0.30 32$ (1987Ca03) Mult.: $\alpha(K)\exp$ also allows mult=E1; but decay scheme requires $\Delta\pi=no$.	
^x 287.822 <i>15</i> 290.254 <i>3</i>	37 <i>4</i> 290 <i>29</i>	389.137	5/2-	98.8839	3/2-	M1(+E2)	<0.54	0.31 3	α (K)exp=0.27 <i>14</i> (1987Ca03) α (K)=0.252 <i>24</i> ; α (L)=0.0435 <i>16</i> ; α (M)=0.0101 <i>3</i> ; α (N+)=0.00298 <i>10</i>	
^x 299.114 <i>12</i> 300.811 <i>2</i>	37 <i>4</i> 232 <i>23</i>	1122.596		821.785	5/2+	E2(+M1)	2.1 +17-4	0.136 25	α (K)exp=0.11 <i>19</i> (1987Ca03) α (K)=0.096 <i>23</i> ; α (L)=0.0304 <i>16</i> ; α (M)=0.0075 <i>3</i> ; α (N+)=0.00215 <i>10</i>	
313.449 6	33 4	524.851	3/2-	211.4064	3/2-					
^x 319.313 4	82 [#] 9					M1(+E2)	<0.57	0.236 22	α (K)exp=0.22 25 (1987Ca03) α (K)=0.193 20; α (L)=0.0332 16; α (M)=0.0077 4; α (N+)=0.00227 10	
319.843 4	73 [#] 9	739.548	1/2-,3/2-	419.704	3/2-	E2(+M1)	≥1.23	0.12 4	α (K)exp=0.11 <i>51</i> (1987Ca03) α (K)=0.08 <i>4</i> ; α (L)=0.0247 <i>25</i> ; α (M)=0.0060 <i>5</i> ; α (N+)=0.00174 <i>16</i>	
320.819 <i>3</i>	79 [#] 9	419.704	3/2-	98.8839	3/2-	M1(+E2)	<0.58	0.233 23	α (K)exp=0.22 26 (1987Ca03) α (K)=0.190 21; α (L)=0.0327 16; α (M)=0.0076 4; α (N+)=0.00224 10	
x325.404 8 x328.471 10	90 <i>12</i> 28 <i>4</i>								a(111)=0.00224 10	
356.395 <i>14</i> 368.671 <i>3</i>	66 [@] 12 146 15	455.276 590.902	5/2 ⁻ 1/2 ⁻ ,3/2 ⁻	98.8839 222.230	3/2 ⁻ 1/2 ⁻ ,3/2 ⁻	M1(+E2)	<0.14	0.174 3	$\alpha(K)=0.1435\ 23;\ \alpha(L)=0.0234\ 4;\ \alpha(M)=0.00539\ 8;$ $\alpha(N+)=0.001591\ 24$	
x373.459 9 378.129 9 379.503 8	27 <i>3</i> 47 6 46 6 26 <i>4</i>	507.920 590.902	5/2 ⁻ ,7/2 ⁻ 1/2 ⁻ ,3/2 ⁻	129.782 211.4064	5/2 ⁻ 3/2 ⁻					
389.803 <i>4</i>	20 4 309 <i>31</i>	821.785	5/2+	431.981	9/2+	E2		0.0469	α (K)exp=0.058 24 (1987Ca03) α (K)=0.0323 5; α (L)=0.01106 16; α (M)=0.00273 4; α (N+)=0.000784 11 Mult.: M=E2(+M1) (1987Ca03). But γ to 9/2 ⁺ rules	

 $^{195}_{78}\text{Pt}_{117}\text{-}4$

 $^{195}_{78}\mathrm{Pt}_{117}\text{-}4$

From ENSDF

						$\gamma(^{195}\text{Pt})$ (continued)		
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. ^{&}	$\delta^{\&}$	α^{a}	Comments
									out (M1) component (evaluator).
391 377 10	26 [#] 4	590 902	1/2- 3/2-	199 5337	3/2-	M1(+F2)	<0.14	0 1481 23	$\delta: \delta = 1.9 + 11 - 4 (1987Ca03).$ $\alpha(K) \exp = 0.18 \cdot 17 (1987Ca03)$
591.577 10	20 1	570.702	1/2 ,5/2	177.5557	572	111(122)	NO.11	0.1101 25	$\alpha(K)=0.1223\ 20;\ \alpha(L)=0.0199\ 3;\ \alpha(M)=0.00459\ 7;\ \alpha(N+)=0.001353\ 20$
392.860 19	18 [#] 4	1132.402	1/2-,3/2-	739.548	1/2-,3/2-				
395.071 <i>3</i>	134 15	524.851	3/2-	129.782	5/2-	M1(+E2)	0.49 +60-49	0.13 4	$\begin{aligned} \alpha(K) &= \ 0.11 \ 4; \ \alpha(L) &= \ 0.018 \ 4; \ \alpha(M) &= \ 0.0042 \ 7; \\ \alpha(N+) &= \ 0.00132 \ 23 \\ \alpha(K) &= \ 0.10 \ 32 \ (1987 Ca03) \end{aligned}$
407.910 12	60 [#] 7	630.146	1/2-,3/2-	222.230	1/2-,3/2-				
409.049 11	54 [#] 6	507.920	5/2-,7/2-	98.8839	3/2-				
^x 409.716 21	54 [#] 7								
^x 414.327 6	120 12								
418.741 8	66 10	630.146	$1/2^{-}, 3/2^{-}$	211.4064	$3/2^{-}$		-0.46	0.116.0	
419.705 4	485 49	419.704	3/2	0.0	1/2	M1(+E2)	<0.46	0.116 8	α (K)exp=0.11 78 (1987Ca03) α (K)=0.096 7; α (L)=0.0159 8; α (M)=0.00367 16; α (N+)=0.00108 5
420.71 6	14 6	1160.390	1/2-,3/2-	739.548	1/2-,3/2-				
424.944 18	18 5	664.207	5/2-,7/2-	239.268	5/2-				
425.978 7 ×420.620.10	72 8 63 7	524.851	3/2-	98.8839	3/2-				
×422 408 11	$109^{\#}$ 16								
432.408 11	108 10 108 12	001 705	5/2+	280 127	5/2-				
452.047 22	40 5	664 207	$5/2^{-}$ $7/2^{-}$	211 4064	$\frac{3}{2}^{-}$				
464.674 7	60 7	664.207	5/2-,7/2-	199.5337	3/2-				
^x 472.217 20	53 [@] 12								
524.846 <i>4</i>	186 <i>19</i>	524.851	3/2-	0.0	$1/2^{-}$				
531.263 23	40 [#] 12	630.146	1/2-,3/2-	98.8839	3/2-				
^x 533.252 19	52 [#] 8								
534.418 15	46 [#] 9	664.207	5/2-,7/2-	129.782	5/2-				
^x 544.126 <i>15</i>	40 5							0 0 400 J -	
590.895 7	159 16	590.902	1/2 ⁻ ,3/2 ⁻	0.0	1/2-	M1(+E2)	<0.32	0.0488 17	α (K)exp=0.05 21 (1987Ca03) α (K)=0.0404 15; α (L)=0.00651 20; α (M)=0.00150 5; α (N+)=0.000442 13
^x 594.26 4	46 [@] 10								
^x 612.870 21	70 8								
^x 617.71 <i>14</i>	21 4	(20.14)	1/0- 2/0-	0.0	1/2-				
629.86 25	11 3	030.140	$1/2$, $3/2^{-1}$	0.0	$\frac{1}{2}$				
640.33 16	203	739 548	$1/2^{-}, 3/2^{-}$	98 8839	$3/2^{-}$				
^x 647.485 12	75 8	109.010	-12 ,012	20.0002	0,2				

S

From ENSDF

 $^{195}_{78}\mathrm{Pt}_{117}\text{-}5$

 $^{195}_{78}\text{Pt}_{117}\text{-}5$

				1	⁹⁴ Pt(n ,	γ) E=thermal	1987Ca	03,1982Wa2	(continued	d)	
						$\gamma(^{19}$	⁹⁵ Pt) (cont	inued)			
E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
687.69 6 ^x 688.96 24	44 8 30 8	926.89	1/2-,3/2-	239.268	5/2-	^x 929.1 4 ^x 930.7 5	25 8 22 7				
705.07 <i>13</i> 715.11 <i>14</i>	31 <i>5</i> 26 <i>4</i>	1160.390 926.89	1/2 ⁻ ,3/2 ⁻ 1/2 ⁻ ,3/2 ⁻	455.276 211.4064	5/2 ⁻ 3/2 ⁻	948.70 <i>15</i> x1005.60 8	38 <i>6</i> 101 <i>11</i>	1160.390	1/2-,3/2-	211.4064	3/2-
x738.27 2 739.74 16	30 6 41 6	739.548	1/2-,3/2-	0.0	1/2-	x1024.91 19 1030.60 22 1032 13 22	28 5 27 6 20 6	1160.390	$1/2^{-}, 3/2^{-}$	129.782	$5/2^{-}$
^x 776.71 5 ^x 864.2 4	17 5 29 4 19 7					x1046.93 9 x1049.09 20	113 <i>12</i> 37 6	1132.402	1/2 ,3/2	90.0039	5/2
892.57 26 x913.9 4 x915.3 4	19 5 27 11 37 10	1132.402	1/2-,3/2-	239.268	5/2-	1061.45 <i>10</i> x1064.8 5 x1066.77 <i>23</i>	86 <i>10</i> 14 <i>6</i> 34 <i>6</i>	1160.390	1/2-,3/2-	98.8839	3/2-
*917.1 3 926.85 23	27 7 25 7	926.89	1/2-,3/2-	0.0	1/2-	^x 10/6.04 21 ^x 1091.27 8	33 7 126 <i>14</i>				

[†] From 1982Wa20. Secondary E γ observed with γ spectrometer and Ge(Li) at thermal neutron energies. Absolute calibration error is not included.

[±] Relative photon intensity obtained from Ge(Li) and normalized to $I\gamma(E\gamma=211 \text{ keV})=1000$, except as noted. Values are from 1982Wa20.

[#] Total intensity of the multiplet was taken from the Ge(Li) data, while relative intensities of the individual components were obtained from the cryst measurements.

^(a) The γ ray was obscured in the Ge(Li) measurements by a contaminant. The intensity was obtained from the ratio to neighboring lines in the cryst measurements.

[&] From $\alpha(\exp)$ measurements (1987Ca03), except as noted. Normalized so that $\alpha(K)(211\gamma)=0.614$ 5 from $\delta(211\gamma)=0.37$, taken by the authors from 1973Ca10.

^a Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

¹⁹⁵₇₈Pt₁₁₇

 $^{195}_{78}Pt_{117}\text{--}8$

 $^{195}_{78} Pt_{117}\text{--}8$

From ENSDF

 ∞