Coulomb excitation

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Huang Xiaolong and Kang Mengxiao	NDS 121,395 (2014)	1-Mar-2014

$$\begin{split} & E(p)=4.5 \ \text{MeV} \ (1971\text{Mi08}, 1972\text{Mi10}), \ 4-5.5 \ \text{MeV} \ (1982\text{Ku22}). \\ & E\alpha=5.5-6.5 \ \text{MeV} \ (1985\text{Br31}, 1984\text{BrZW}), \ 16 \ \text{MeV} \ (1978\text{Ba38}), \ 10 \ \text{MeV} \ (1970\text{Br26}), \ 3.0-5.3 \ \text{MeV} \ (1959\text{Mc69}). \\ & E(^{16}\text{O})=43.75 \ \text{MeV} \ (1972\text{Mi10}), \ 41 \ \text{MeV} \ (1970\text{Br26}), \ 36 \ \text{MeV} \ (1966\text{Gr20}), \ 35 \ \text{MeV} \ (1969\text{Ku06}), \ 36 \ \text{MeV} \ (1972\text{Sp03}). \\ & E(^{32}\text{S})=125 \ \text{MeV} \ (1986\text{Ma57}). \\ & Others: \ 1958\text{Ba37}, \ 1965\text{Ro09}. \end{split}$$

¹⁹⁵Pt Levels

X, $\gamma(\theta)$	measurements	(1959Mc69,1982Ku22)

E(level),keV	Eγ,keV	A_2		spin sequence		δ	
98.9	98.9	-0.230	10	3/2(d,Q)1/2	+0.022 11		
199.3	199.3	+0.450	40	3/2(d,Q)1/2	+1.1 2	or (+3.3	6)
211.2	211.2	+0.090	04	3/2(d,Q)1/2	+0.39 1	or (-5.8	0.2)
239.2	140.2	-0.330	30	5/2(d,Q)3/2	-0.13 3		
239.2	239.2	+0.301	18	5/2(Q)1/2			
389.6	290.9	-0.033	22	5/2(d,Q)3/2	-0.12 2	or 2.2 I	4
449.6	319.9	+0.319	32	5/2(d,Q)5/2	+0.04 20	or 1.1	12
793.0	793.0	+0.437	80	3/2(d,Q)1/2	+1.0 4	or (3.6	14)

E(level) [†]	J ^{π#}	T _{1/2}	Comments
0.0	$1/2^{-@a}$	stable	configuration= $J^{\pi} < \sigma_1, \sigma_2, \sigma_3 > (\tau_1, \tau_2) = 1/2 - (7,0,0) - (0,0)(1986Ma57).$
98.9 <i>3</i>	$3/2^{-a}$	0.163 ns 2	B(E2)↑=0.072 <i>12</i>
	,		$T_{1/2}$: from 1974Ru03 (Moss). Other: 0.16 ns 3 if av B(E2)=0.15 3 from 0.19 4
			(1959Mc69), 0.11 4 (1966Gr20); $T_{1/2}$ =0.34 ns 6 from adopted B(E2).
			B(E2) \uparrow : From B(E2)=0.076 12 (1985Br31) after correcting α =7.6 to 7.1. Earlier values
			are incorrect since feeding from 199 level was not corrected for. configuration $-\frac{17}{2} < \sigma_{1} < \sigma_{2} < \sigma_{2} < \sigma_{2} > (2 - \sigma_{2}) = 3/2 < 6 + 1.0 > (1 - 0) (1086 Mas 57)$
129 71 10	5/2 ^{-a}	0.67 ns 3	Configuration $= J^{-1}(0_{1}, 0_{2}, 0_{3}) + (l_{1}, l_{2}) = 3/2 - (0, l_{1}, 0) + (l_{1}, 0$
127.71 10	5/2	0.07 113 5	B(E2): 0.19 2 (1970Br26), 0.17 5 (1966Gr20), 0.39 13 (1959Mc69), 0.198 12
			(1985Br31).
			configuration= $J^{\pi} < \sigma_1, \sigma_2, \sigma_3 > -(\tau_1, \tau_2) = 5/2 - <6, 1, 0 > -(1, 0)$ (1986Ma57).
199.31 20	$(3/2)^{-a}$	5.0 ns 14	B(E2)↑=0.058 9
			$T_{1/2}$: from B(E2)).
			B(E2): Weighted average of 0.098 14 (19/0Br26), 0.0/6 12 (19/1Mi08), 0.082 12 (1082Ku22), and 0.054 5 (1085Br21). These data have been corrected for adopted
			decay branching
			configuration= $J^{\pi} < \sigma_1, \sigma_2, \sigma_3 > -(\tau_1, \tau_2) = 3/2 - <6, 1, 0 > -(1, 1)$ (1986Ma57).
211.2 3	3/2 ^{-a}	49 ps 8	B(E2)↑=0.39 2
		-	$T_{1/2}$: from B(E2) [↑] . Others: 53 ps 9 (1971NoZT) recoil distance, 67 ps 5 (1965B110)
			pulsed beam, microwave.
			B(E2) \uparrow : From weighted average of 0.43 5 (1959Mc69), 0.40 3 (1971Mi08) 0.35 4
			(1960Gr20), 0.40.2 $(1970Br20), 0.442.20$ $(1982Ku22), 0.38.2$ $(1985Br31).$
			configuration= $J^{\pi} < \sigma_1, \sigma_2, \sigma_2 > (\tau_1, \tau_2) = 3/2 - <7.0.0 > -(1.0)(1986Ma57).$
222	$(1/2^{-})$ & a		configuration = $I^{\pi} < \sigma_1, \sigma_2, \sigma_3 > (\tau_1, \tau_2) = 1/2 - <61.0 > (1.1)(1986Ma57)$
239.1 4	$5/2^{-a}$	70 ps 5	$B(E2)\uparrow=0.70 3$
	,	1	$T_{1/2}$: from B(E2) \uparrow . Other: 80 ps 4 (1971NoZT) recoil distance.
			B(E2)↑: Weighted average of 0.66 5 (1970Br26), 0.71 9 (1959Mc69), 0.73 5
			(1982Ku22). Values are all corrected for adopted decay branching. Other: 0.51 3

Continued on next page (footnotes at end of table)

Coulomb excitation (continued)

¹⁹⁵Pt Levels (continued)

E(level) [†]	$J^{\pi \#}$	T _{1/2}	Comments
			(1985Br31) but branching used by authors is not specified. g: 0.21 2 (1974Ga31), 0.22 3 (1972Va16) if $T_{1/2}=80$ ps. Other g: 1969Ku06, 1972Sp03.
389.4 4	5/2 ^{-a}	9 ps 4	Configuration= $J < \sigma_1, \sigma_2, \sigma_3 > (\tau_1, \tau_2) = 3/2 - <7, 0, 0 > (1, 0) (1980Ma57).$ B(E2) $\uparrow = 0.025 \ 2$ T _{1/2} : from B(E2) \uparrow . configuration= $J^{\pi} < \sigma_1, \sigma_2, \sigma_3 > (\tau_1, \tau_2) = 5/2 - <6, 1, 0 > (1, 1) (1986Ma57).$
420.0 6	3/2 ^{-a}		B(E2) \uparrow : weighted average of 0.021 3 (1985Br31), 0.0264 19 (1982Ku22). B(E2) \uparrow =0.030 2 (1985Br21) configuration= $\frac{17}{2} < \tau_1$, τ_2 , τ_3 , τ_3 , τ_3 , τ_3 , τ_4 , τ_5 , τ
449.6? 8	$(7/2^{-})^{\&}$		$B(E2)\uparrow=0.18 \ 3 \ (1982Ku22)$ E(level): evaluator considers authors' evidence for this level to be tentative. configuration= $J^{\pi} < \sigma_1, \sigma_2, \sigma_2 > (\tau_1, \tau_2) = 7/2 - <6.1.0 > (1.1)(1986Ma57).$
455.3 [‡] 10	5/2 ^{-&a}		B(E2) \uparrow <12×10 ⁻⁵ (1985Br31) E(level): excited via a two-step process (1986Ma57). configuration= J^{π} < $\sigma_1, \sigma_2, \sigma_3$ >-(τ_1, τ_2)=5/2-<6,1,0>-(2,0)(1986Ma57). E(level): 449.6 (1982Ku22) may correspond to this level.
507.5 [‡] 8	7/2 ^{-&a}	9.5 ps 22	B(E2)(99-508)=0.48 <i>10</i> (1986Ma57). T _{1/2} : from B(E2) for branching (409 γ)=0.46 <i>5</i> . configuration= $l^{2} < \pi < $
525.2 4	3/2 ^{-a}		Configuration= $J^{\pi} < \sigma_1, \sigma_2, \sigma_3 > (\tau_1, \tau_2) = 3/2 - (\tau_1, \sigma_2, \sigma_3) - (\tau_1, \tau_2) = 3/2 - (\tau_1, \sigma_2, \sigma_3) - (\tau_1, \tau_2) = 3/2 - (\tau_1, \sigma_2, \sigma_3) - (\tau_1,$
544.2 5	5/2 ^{-&a}		B(E2)(130-563)=0.024 12 (1986Ma57). configuration= $\int_{-\infty}^{\pi} \langle \sigma_1, \sigma_2, \sigma_2 \rangle - \langle \tau_1, \tau_2 \rangle = 5/2 - \langle \tau_2, \sigma_2, \sigma_2 \rangle - \langle \tau_2, \sigma_2, \sigma_2 \rangle - \langle \tau_1, \tau_2 \rangle = 5/2 - \langle \tau_2, \sigma_2, \sigma_2 \rangle - \langle \tau_1, \sigma_2, \sigma_2 \rangle - \langle \tau_2, \sigma_2, \sigma_2, \sigma_2, \sigma_2 \rangle - \langle \tau_2, \sigma_2, \sigma_2, \sigma_2, \sigma_2 \rangle - \langle \tau_2, \sigma_2, \sigma_2, \sigma_2, \sigma_2, \sigma_2 \rangle - \langle \tau_2, \sigma_2, \sigma_2, \sigma_2, \sigma_2, \sigma_2, \sigma_2, \sigma_2, \sigma$
562.9 [‡] 8	9/2 ^{-&a}	14 ps 3	B(E2) \uparrow =0.40 7 (1986Ma57) T _{1/2} : from B(E2). configuration= $J^{\pi} < \sigma_1, \sigma_2, \sigma_3 > -(\tau_1, \tau_2) = 9/2 - <6.1.0 > -(2.0)(1986Ma57).$
589.9 [‡] 10	3/2 ^{-&a}		B(E2) \uparrow <0.0008 (1985Br31) configuration = $l^{n} < \tau_{2} < \tau_{2} < \tau_{2} < 61.0 > (2.1) (1986Ma57)$
612.7 [‡] 7	7/2 ^{-&a}	6 ps 3	$B(E2)(211-613)=0.34 \ 14 \ (1986Ma57).$ $T_{1/2}: \ from \ B(E2).$ $Configuration = I^{T} < \sigma_{1}, \sigma_{2}, \sigma_{3} > (\sigma_{1}, \sigma_{2}) = 7/2 = <7.0 \ 0 > (2.0) \ (1986Ma57).$
631.9 [‡] 6 666.9 [‡] 8	$\frac{1}{2^{-},3}\frac{a}{2^{-}}$		configuration= $J^{\pi} < \sigma_1, \sigma_2, \sigma_3 > (\tau_1, \tau_2) = 1/2 - <6, 1, 0 > (2, 0) (1960 Ma57).$ B(E2)(239-667)=0.33 7 (1986Ma57). configuration= $J^{\pi} < \sigma_1, \sigma_2, \sigma_3 > (\tau_1, \tau_2) = 1/2 - <6, 1, 0 > (2, 0) (1986Ma57).$
678.1 [‡] <i>11</i> 793.0 <i>10</i> 927? [‡] 1092.5 [‡] 9	$3/2^{-a}$ $1/2^{-},3/2^{-\&a}$ $(5/2 \text{ to } 13/2)^{\&a}$		$B(E2)\uparrow=0.0149 \ 24 \ (1982Ku22)$ configuration= $J^{\pi} < \sigma_1, \sigma_2, \sigma_3 > -(\tau_1, \tau_2) = 1/2 - <5, 0, 0 > -(0, 0)(1986Ma57).$
1132? [‡] 1155.8? [‡] 5	$(5/2^{-}, 3/2^{-\&a})$ $(5/2^{-})^{\&a}$		configuration= $J^{\pi} < \sigma_1, \sigma_2, \sigma_3 > -(\tau_1, \tau_2) = 3/2 - <5, 0, 0 > -(1, 0)(1986Ma57).$ configuration= $J^{\pi} < \sigma_1, \sigma_2, \sigma_3 > -(\tau_1, \tau_2) = 5/2 - <5, 0, 0 > -(1, 0)(1986Ma57).$

[†] From scheme and $E\gamma$ using least-squares fit to data. [‡] From 1986Ma57. [#] From $\gamma(\theta)$ and ce measurements (1982Ku22,1985Br31), except as noted.

[@] From Adopted Levels.

[&]amp; From 1986Ma57. Based on ${}^{32}S,\gamma(\theta)$ measurements and U(6/12) multi-J supersymmetry scheme of the interacting boson-fermion model. a Analyzed by using multi-J supersymmetry scheme of interacting boson-fermion model (1986Ma57).

	Coulomb excitation (continued)								
							γ (¹⁹⁵ Pt)	
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	δ	α b	Comments
(28)		239.1	$5/2^{-}$	211.2	$3/2^{-}$				$\alpha(L) = 39.7; \ \alpha(M) = 9.17$
(30.8 [@]) 98.9 5		129.71 98.9	5/2 ⁻ 3/2 ⁻	98.9 0.0	3/2 ⁻ 1/2 ⁻	M1+E2 [@] M1+E2	$-0.021^{@}$ 4 -0.130 4	37.9 6.85 <i>14</i>	α (L)=29.2 5; α (M)=6.76 11; α (N+)=1.99 3 α (K)=5.57 12; α (L)=0.981 21; α (M)=0.228 5; α (N+)=0.0672
									14 B(M1)(W.u.)=0.0175 5; B(E2)(W.u.)=11.6 8 E _{γ} : from 1965Ro09.
									δ: from L-subshell ratios (¹⁹⁵ Au decay), sign from 1972Ba22, 1965Ca12. Other δ =+0.129 26 p,γ(θ) (1966As02); +0.022 11 (1959Mc69).
									α (K)exp=5.8 <i>15</i> from K x ray/I γ (1959Mc69) is in agreement with δ =0.13.
100.7 ^{&} 129.7 <i>1</i>		199.31 129.71	(3/2) ⁻ 5/2 ⁻	98.9 0.0	3/2 ⁻ 1/2 ⁻	M1+E2 ^{&} E2	+0.02 23	6.53 <i>14</i> 1.732	$\begin{array}{l} \alpha({\rm K}){=}5.4 \ 3; \ \alpha({\rm L}){=}0.90 \ 13; \ \alpha({\rm M}){=}0.21 \ 4; \ \alpha({\rm N}{+}){=}0.061 \ 10 \\ \alpha({\rm K}){=}0.468 \ 7; \ \alpha({\rm L}){=}0.950 \ 14; \ \alpha({\rm M}){=}0.245 \ 4; \ \alpha({\rm N}{+}){=}0.0692 \\ 10 \end{array}$
									E_{γ} : from 1973Ja10 (¹⁹⁵ Ir decay).
140.2 [#] 6	46 [‡] 4	239.1	5/2-	98.9	3/2-	M1+E2	-0.19 6	2.50 6	$\alpha(K)=2.03 6; \alpha(L)=0.357 11; \alpha(M)=0.083 3; \alpha(N+)=0.0245 8$ B(M1)(W.u.)=0.0180 24; B(E2)(W.u.)=13 8 I _y : 38 8 (1966Gr20). δ : av: -0.13 3 (1959Mc69) a, $\gamma(\theta)$, -0.21 3 (1966As02) p, $\gamma(\theta)$,
150 [#] 1		380 /	5/2-	230.1	5/2-				-0.24 4 (1982Ku22). $\alpha(K) = 1.781; \alpha(L) = 0.296; \alpha(M) = 0.0682; \alpha(N + 1) = 0.02150$
199.3 2		199.31	$(3/2)^{-}$	0.0	$1/2^{-}$	M1+E2	+1.2 2	0.60 6	$\alpha(K) = 1.781, \alpha(L) = 0.290, \alpha(M) = 0.0082, \alpha(N+) = 0.02150$ $\alpha(K) = 0.42$ 6; $\alpha(L) = 0.138$ 3; $\alpha(M) = 0.0339$ 9; $\alpha(N+) = 0.00976$ 22
									E _γ : from 1970Br26. δ: from α (K)exp (1972HsZX). Others: +0.55 +31–20 (1970Br26) a, $\gamma(\theta)$, +0.10 5 (1985Br31), +1.1 2 (1982Ku22).
211.2 [#] 3		211.2	3/2-	0.0	1/2-	M1+E2	+0.38 3	0.739 14	$\alpha(K)=0.596 \ 13; \ \alpha(L)=0.1093 \ 16; \ \alpha(M)=0.0256 \ 4; \ \alpha(N+)=0.00751 \ 11 \ P(M) \ (W_{W})=0.024 \ 4; \ P(E2)(W_{W})=20.7$
									B(M1)(w.u.)=0.024 4, B(E2)(w.u.)=50 7 δ: from 1969Ku06 ¹⁶ O, $\gamma(\theta)$. Others: +0.36 +3-4 (1970Br26), +0.37 2 (1959Mc69) a, $\gamma(\theta)$, +0.30 3 (1985Br31) a, $\gamma(\theta)$, +0.39 1 (1982Ku22).
239.2 [#] 6	100 [‡]	239.1	5/2-	0.0	1/2-	E2		0.199 4	$\alpha(K)=0.1080 \ 17; \ \alpha(L)=0.0683 \ 12; \ \alpha(M)=0.0173 \ 3; \ \alpha(N+)=0.00492 \ 9 \ B(E2)(W.u.)=55 \ 5 \ M_{2}(L)=0.00492 \ \alpha(M)=0.00173 \ 1050M_{2}(L)=0.00173 \ 3; \ \alpha(M)=0.0173 \ 3; \ \alpha(M)=0.0173 \ 3; \ \alpha(M)=0.00492 \ 9 \ 3; \ \alpha(M)=0.00173 \ 3; \ \alpha(M)=0.00492 \ 9 \ 3; \ \alpha(M)=0.00492 \ 3; \ \alpha($
259 7 <mark>#</mark> 6	1 48 15	389 4	5/2-	120 71	5/2-	$(M1\pm F2)$	+0.01 & 3	0.453	NUIL: E2 IFOM $a, \gamma(\theta)$: 1959Mico9, 1970BF26. B(F2)1<0.014 (1985Br31)
237.1 0	1.70.13	507.7	5/2	129.71	512	(1911 7122)	10.01 J	0.733	$\alpha(K)=0.374$ 6; $\alpha(L)=0.0611$ 10; $\alpha(M)=0.01412$ 22;

 $^{195}_{78}\text{Pt}_{117}\text{-}3$

Coulomb excitation (continued)

$\gamma(^{195}\text{Pt})$ (continued)

E_{γ}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	δ	α b	Comments
					<u> </u>				α (N+)=0.00417 7 B(M1)(W.u.)=0.030 14; B(E2)(W.u.)=0.017 +104-17 Mult.: from α (K)exp (3.8-h ¹⁹⁵ Ir decay).
285.8 [#] 6	1.38 [‡] <i>17</i>	525.2	3/2-	239.1	5/2-	M1+E2	+0.14 ^{&} 14	0.344 14	α (K)=0.283 <i>13</i> ; α (L)=0.0467 <i>10</i> ; α (M)=0.01080 <i>21</i> ; α (N+)=0.00318 <i>7</i>
290.9 [#] 6	3.55 [‡] <i>30</i>	389.4	5/2-	98.9	3/2-	M1(+E2)	-0.47 ^{&} 7	0.292 11	$ α(K)=0.236 \ 10; \ α(L)=0.0424 \ 9; \ α(M)=0.00990 \ 19; α(N+)=0.00291 \ 6 $ B(M1)(W.u.)=0.042 20; B(E2)(W.u.)=42 22 Mult.: from α(K)exp (3.8-h ¹⁹⁵ Ir decay). δ: other: -0.12 2 (1982Ku22).
296 ^a 305 ^a		507.5 544-2	5/2 ⁻	211.2 239.1	3/2 5/2-				$1\gamma/1\gamma(409\gamma)=0.046\ 10\ (1986Ma57).$
319.9 ^c	75 7	449.6?	(7/2 ⁻)	129.71	5/2-	M1+E2		0.17 9	$\alpha(K)=0.13 \ 8; \ \alpha(L)=0.028 \ 7; \ \alpha(M)=0.0068 \ 12; \ \alpha(N+)=0.0020 \ 4 \ \alpha(K)=0.219 \ 9; \ \alpha(L)=0.0357 \ 7; \ \alpha(M)=0.00820 \ 14; \ \alpha(N+)=0.00256 \ 5 \ \delta: \ 0.20 \ 4 \ or \ 1.1 \ 2 \ (1982Ku22).$
320.8 ^{&}		420.0	3/2-	98.9	3/2-	M1+E2 ^{&}	-0.12 ^{&} 5	0.252 5	$\alpha(K)=0.208$ 4; $\alpha(L)=0.0341$ 5; $\alpha(M)=0.00787$ 12; $\alpha(N+)=0.00232$ 4
324 ^a 333 ^a 350.9 ^c 374 ^a	9	562.9 544.2 449.6? 612.7	9/2 ⁻ 5/2 ⁻ (7/2 ⁻) 7/2 ⁻	239.1 211.2 98.9 239.1	5/2 ⁻ 3/2 ⁻ 3/2 ⁻ 5/2 ⁻				$I\gamma/I\gamma(433\gamma)=0.089 \ 11 \ (1986Ma57).$
389 ^a 1	0.096 43	389.4	5/2-	0.0	1/2-	E2 ^{&}		0.0471 8	$\alpha(K)=0.0325 5; \alpha(L)=0.01113 19; \alpha(M)=0.00275 5; \alpha(N+)=0.000789 14$ B(E2)(W.u.)=1.5 10 I _y : from Iy(389y)/Iy(290y)=0.027 12 deduced from B(E2) ratio and $\delta(290y)$ (1985Br31)
392.8 ^a 5		631.9	1/2-,3/2-	239.1	5/2-				
395.5 [#] 6	1.57 [‡] <i>17</i>	525.2	3/2-	129.71	5/2-	M1+E2	+0.35 ^{&} 6	0.134 4	α(K)=0.110 4; α(L)=0.0184 4; α(M)=0.00427 9; α(N+)=0.00126 3
402 ^a 409 ^a		612.7 507.5	7/2 ⁻ 7/2 ⁻	211.2 98.9	3/2 ⁻ 3/2 ⁻	E2 ^{<i>a</i>}		0.0412	$\alpha(K)=0.0289 \ 4; \ \alpha(L)=0.00940 \ 14; \ \alpha(M)=0.00231 \ 4; \ \alpha(M)=0.00251 \ 4; \ \alpha(M)=0.00265 \ 10$
414 ^{<i>a</i>} ×415 0 [#] 6	2.47 [‡] 20	544.2	5/2-	129.71	5/2-				
420.1 [#] 6	2, 20	420.0	3/2-	0.0	$1/2^{-}$	M1+E2 ^{&}	+0.17 & 2	0.1211 19	α (K)=0.1000 <i>16</i> ; α (L)=0.01628 <i>25</i> ; α (M)=0.00376 <i>6</i> ; α (N+)=0.001108 <i>17</i>
426.5 [#] 6	0.89 [‡] 18	525.2	3/2-	98.9	3/2-	M1+E2	-3.3 ^{&} 28	0.04 6	α (K)=0.03 6; α (L)=0.009 6; α (M)=0.0021 12; α (N+)=0.0006 4 MR=-0.44 to -6.1 (1985Br31).

4

_

Coulomb excitation (continued)									
						$\gamma(^{195}\text{Pt})$ ((continued)		
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_f J	\int_{f}^{π} Mult.	δ	α b	Comments	
428 ^{<i>a</i>}		666.9	(9/2 ⁻)	239.1 5/	2 ⁻ (E2)		0.0366	$\alpha(K)=0.0260 \ 4; \ \alpha(L)=0.00809 \ 12; \ \alpha(M)=0.00198 \ 3; \ \alpha(N+)=0.000571 \ 8$	
433 ^a		562.9	9/2-	129.71 5/	2 ⁻ (E2)		0.0355	$\alpha(K)=0.0253 \ 4; \ \alpha(L)=0.00779 \ 11; \ \alpha(M)=0.00191 \ 3; \ \alpha(N+)=0.000550 \ 8$	
439 ^a		678.1		239.1 5/	2-				
445 [#] 1		544.2	5/2-	98.9 3/	2-				
455.3 <mark>&</mark>		455.3	5/2-	0.0 1/	2-				
513 ^a		612.7	7/2-	98.9 3/	2-			$I\gamma/I\gamma(402\gamma)=0.10 \ 3 \ (1986Ma57).$	
525 [#] 1		525.2	3/2-	0.0 1/	2 ⁻ M1+E2	+2.2 ^{&} 12	0.030 16	$\alpha(K)=0.023 \ I4; \ \alpha(L)=0.0051 \ I6; \ \alpha(M)=0.0012 \ 4; \ \alpha(N+)=0.00035 \ I1 \ MB=+11 \ to +34 \ (1985Br31)$	
529.6 ^a 5		1092.5	(5/2 to 13/2)	562.9 9/	2-				
537 ^a		666.9	(9/2 ⁻)	129.71 5/	2-			$I\gamma/I\gamma(428\gamma)=0.19 \ 3 \ (1986Ma57) \ from B(E2)(537\gamma)/B(E2)(428\gamma)=0.06 \ 1.$	
545 [#] 1		544.2	5/2-	0.0 1/	2-				
589.9 <mark>&</mark>		589.9	3/2-	0.0 1/	2-				
793	100‡	793.0	3/2-	0.0 1/	2 ⁻ M1+E2		0.016 8	$\alpha(K)=0.013$ 7; $\alpha(L)=0.0022$ 9; $\alpha(M)=0.00052$ 20; $\alpha(N+)=0.00015$ 6 δ_{1} +1.0 4 or 3.6 14 (1982Ku22)	

 † Relative photon branching intensities, except as noted.

[‡] Relative photon intensity normalized to $I\gamma(E\gamma=239 \text{ keV})=100$. Values are from 1972Mi10. [#] From 1972Mi10. [@] From adopted γ radiations.

^k From 1985Br31. ^a From 1986Ma57. ^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^c Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

From ENSDF

 $^{195}_{78} Pt_{117}\text{--}5$

¹⁹⁵₇₈Pt₁₁₇