¹⁹⁵Ir β^- decay (3.67 h) 1973Ja10

History

TypeAuthorCitationLiterature Cutoff DateFull EvaluationHuang Xiaolong and Kang MengxiaoNDS 121, 395 (2014)1-Mar-2014

Parent: ¹⁹⁵Ir: E=100 5; J^{π}=11/2⁻; T_{1/2}=3.67 h 8; Q(β ⁻)=1102.0 21; % β ⁻ decay=95 5

Measured E γ , I γ , E(ce), α (K)exp, and $\gamma\beta$ with Ge(Li) and Si(Li).

Sources produced by 198 Pt(p, α) (1973Ja10), 198 Pt(d, α n) (1968Ja06), and 192 Os(α ,p) (1968Ho01).

Energy balance: total decay energy of 1054 keV 56 deduced (using RADLIST code) from proposed decay scheme is in agreement

with the expected value of 1142 keV 60 ((Q(β^- , g.s.)+100keV)× %I β^-), suggesting that the decay scheme is reasonably complete.

¹⁹⁵Pt Levels

All data are shown in the drawing.

E(level) [†]	J ^{π‡}	$T_{1/2}^{\ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0.0	$1/2^{-}$	stable	389.09 7	$5/2^{-}$	612.65 9	$(7/2)^{-}$
98.81 <i>4</i>	$3/2^{-}$		432.03 12	9/2+	695.26 7	$(7/2)^{-}$
129.75 4	$5/2^{-}$		449.62 6	$(7/2)^{-}$	814.48 5	9/2-
199.47 <i>4</i>	$3/2^{-}$		455.12 6	$5/2^{-}$	895.34 8	9/2-
211.29 7	3/2-		508.04 6	$(7/2)^{-}$	930.67 7	9/2-
239.20 6	$5/2^{-}$		547.24 12	$(11/2^+)$		
259.28 12	$13/2^{+}$	4.010 d 5	562.78 6	9/2-		

[†] From decay scheme and $E\gamma$ using least-squares fit to data.

[‡] From Adopted Levels.

β^{-} radiations

Measured β singles, $\beta\gamma$ -coin, and F-K plots with Ge(Li) and Si(Li) (1973Ja10). Q(β^-)=1230 20 (weighted av) from measured (410 β)(685 γ)-, (670 β)(433 γ)-, (810 β)(173 γ)-coin.

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
(271 6)	930.67	5.0 9	5.54 9	av Eβ=75.4 <i>17</i>
(307 6)	895.34	1.9 <i>3</i>	6.13 8	av E β =86.2 17
(388 6)	814.48	36 6	5.18 8	av $E\beta = 111.8 \ I8$
				E(decay): $E\beta = 410\ 20\ \text{from }\beta(685\gamma)$ -coin.
(507 6)	695.26	0.6 6	7.3 5	av $E\beta = 151.2$ 19
(639 6)	562.78	7.7 13	6.57 8	av E β =197.1 20
				E(decay): $E\beta = 670 \ 20 \ \text{from } \beta(433\gamma)$ -coin.
(655 6)	547.24	0.9 5	7.54 25	av $E\beta = 202.6\ 20$
(694 6)	508.04	1.2 5	7.50 19	av E β =216.6 20
(747 6)	455.12	1.5 6	7.51 18	av E β =235.8 20
(770 6)	432.03	7.3 12	6.87 8	av E β =244.2 20
				E(decay): $E\beta = 810 \ 40 \ \text{from } \beta(173\gamma)$ -coin.
(943 6)	259.28	33 7	6.52 10	av $E\beta = 308.9 \ 21$
. ,				$I\beta^{-}$: $I(\beta + \gamma + ce)$ to 259 level=33 7 (1973Ja10).

[†] From I(γ +ce) imbalance.

[‡] Absolute intensity per 100 decays.

$\gamma(^{195}{\rm Pt})$

Iy normalization: From %IT=5 5 and I(β + γ +ce) to 259 level=33 7 (1973Ja10).

 \mathbf{b}

$E_{\gamma}^{\#}$	I_{γ}^{ac}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ	α^{d}	$I_{(\gamma+ce)}^{c}$	Comments
(19.8)		259.28	13/2+	239.20	5/2-	[M4] [‡]		6.68×10 ⁸	5.1 3	ce(L)/(γ +ce)=0.566 8; ce(M)/(γ +ce)=0.331 6; ce(N+)/(γ +ce)=0.1033 20 B(M4)(W.u.)=0.6 3 I($_{\gamma+ce}$): from intensity balance at 259 level and I(γ +ce) branching.
$x^{27.8} 4$ (28.0)	2.4 5	239.20	5/2-	211.29	3/2-				18 <i>3</i>	I _{(γ+ce}): from I(γ +ce)(28 γ)/I(γ +ce)(140 γ)= 0.64 3 (¹⁹⁵ Pt IT decay).
30.85	19.3 ^{&} 3	129.75	5/2-	98.81	3/2-	M1+E2	-0.021 4	37.7	747 8	ce(L)/(γ +ce)=0.749 8; ce(M)/(γ +ce)=0.174 4; ce(N+)/(γ +ce)=0.0512 11 δ ,Mult.: from L-subshell ratios, sign from ce $\gamma(\theta)$: ¹⁹⁵ Au ε decay. I(γ +ce): from intensity balance at 129.7 level and I γ -branching. I $_{\gamma}$: from I(γ +ce)/(1+ α). Measured I γ =33 4 includes 2.29-h component.
60.4	<15	449.62	(7/2) ⁻	389.09	5/2-				12 4	$I_{(\gamma+ce)}$: required for intensity balance at 389 level.
98.85 5	109.3 ^{&} 18	98.81	3/2-	0.0	1/2-	M1+E2	-0.130 4	6.86	859 10	$ α(K)=5.58 \ β; \ α(L)=0.983 \ 14; \ α(M)=0.229 $ 4; $α(N+)=0.0673 \ 10$ $I_{(γ+ce)}$: required for intensity balance at 98.9 level. I_{γ} : from $I(γ+ce)/(1+α)$. Measured $I_{\gamma}=210$ 10 includes 2.29-h component. $δ$,Mult.: from L-subshell ratios (¹⁹⁵ Au decay) sign from 1972Ba22, 1965Ca12
100.652 3	1.02 12	199.47	3/2-	98.81	3/2-	M1(+E2)	+0.02 23	6.54 <i>14</i>	7.7 9	$\alpha(K)=5.4$ 3; $\alpha(L)=0.90$ 13; $\alpha(M)=0.21$ 4 E_{γ} : from ¹⁹⁴ Pt(n, γ), not observed in 1973Ja10. Mult., δ : from adopted gammas. $I_{(\gamma+ce)}$: from intensity balance at 199.4 level. I_{γ} : from $I(\gamma+ce)/(1+\alpha)$.
115.0 5	1.0 3	547.24	(11/2 ⁺)	432.03	9/2+	[M1,E2] [‡]		3.6 9		$\alpha(K)=2.1\ 16;\ \alpha(L)=1.1\ 6;\ \alpha(M)=0.28\ 15;\ \alpha(N+)=0.08\ 4$ $\alpha: \text{ from } [(\alpha(M1)+\alpha(E2))]/$
119.12 ^e 10	4 ^e 1	508.04	(7/2)-	389.09	5/2-					$2\pm [(\alpha(M1)-\alpha(E2))]/2.$ I _{γ} : doublet=4 <i>1</i> . Intensity balance suggests small fraction deexcites from 508 level.

					195	$\operatorname{Ir} \beta^{-} \operatorname{deca}$	y (3.67 h)	1973Ja10 (c	continued)	
γ ⁽¹⁹⁵ Pt) (continued)										
$E_{\gamma}^{\#}$	I_{γ}^{ac}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ	α^{d}	$I_{(\gamma+ce)}^{c}$	Comments
119.12 ^e 10	4 ^e 1	814.48	9/2-	695.26	(7/2)-	(M1)		4.04		$ \begin{array}{l} \alpha(\mathrm{K}) = 3.32 \ 5; \ \alpha(\mathrm{L}) = 0.551 \ 8; \ \alpha(\mathrm{M}) = 0.1275 \ 19; \\ \alpha(\mathrm{N} +) = 0.0376 \ 6 \\ \alpha(\mathrm{K}) \exp = 4.5 \ 12. \end{array} $
(129.5 2)	0.385 21	259.28	13/2+	129.75	5/2-	M4 ^b		1135 19	431 23	ce(K)/(γ +ce)=0.134 3; ce(L)/(γ +ce)=0.613 9; ce(M)/(γ +ce)=0.194 5; ce(N+)/(γ +ce)=0.0576 14 B(M4)(W.u.)=1.36 11 I(γ +ce): from intensity balance at 259 level and
										E_{γ} : from 1961Kr02 (¹⁹⁵ Pt IT decay).
129.70 5	17.4 ^{&} 15	129.75	5/2-	0.0	1/2-	E2 ^b		1.732	47.5 6	ce(K)/(γ +ce)=0.1712 25; ce(L)/(γ +ce)=0.348 5; ce(M)/(γ +ce)=0.0897 14; ce(N+)/(γ +ce)=0.0253 5 I(γ +ce): from intensity balance at 129.7 level and I γ branching.
						4				2.29-h component.
130.3 5	0.8 5	562.78	9/2-	432.03	9/2+	[E1]‡		0.208 4		α (K)=0.169 3; α (L)=0.0300 6; α (M)=0.00694 13; α (N+)=0.00199 4
140.50 <i>10</i>	8 1	239.20	5/2-	98.81	3/2-	M1+E2	-0.17 4	2.49		$\alpha(K)=2.034; \alpha(L)=0.3537; \alpha(M)=0.082018; \alpha(N+)=0.02415$ δ Mult : from Coul. ex. (1959Mc6919664s02)
^x 147.60 15	1.0 3									o, water, from coul. ex. (175) web, 1760 (1862).
150.11 15	1.8 4	389.09	5/2-	239.20	5/2-	[M1] [‡]		2.09		$\alpha(K)=1.722\ 25;\ \alpha(L)=0.285\ 4;\ \alpha(M)=0.0658\ 10;$ $\alpha(N+)=0.0194\ 3$
172.78 7	52 2	432.03	9/2+	259.28	13/2+	E2		0.598		$\alpha(K+)=0.017+3^{-1}$ $\alpha(K)=0.244$ 4; $\alpha(L)=0.266$ 4; $\alpha(M)=0.0683$ 10; $\alpha(N+)=0.0193$ 3 $\alpha(K)\exp=0.50$ 10, $\alpha(K)\exp/\alpha(L)\exp=1.7$ 4. Mult.: from adopted γ radiations. Mult=E2 is discrepant with the conversion data from β^{-} decay, which leads to mult=M1+E2 with $\delta=\pm1.7$ +6-4.
x178.46 25	0.9 2									
197.44 23 199.58 <i>15</i>	6 <i>1</i>	199.47	3/2-	0.0	1/2-	M1+E2	+1.2 2	0.60 <i>6</i>		α(K)=0.42 6; α(L)=0.1371 25; α(M)=0.0337 9; α(N+)=0.00971 21 α(K)exp: 1.4 5 (1973Ja10), 0.44 6 (1972HsZX, 195Au ε decay). δ,Mult.: from α(K)exp (1972HsZX), sign from Coul. ex. (1970Br26).
201.65 <i>15</i>	8 1	814.48	9/2-	612.65	(7/2) ⁻	M1		0.912		$\begin{aligned} &\alpha(K)=0.752 \ 11; \ \alpha(L)=0.1237 \ 18; \ \alpha(M)=0.0286 \ 4; \\ &\alpha(N+)=0.00843 \ 12 \\ &I_{(\gamma+ce)}: \text{ from intensity balance at } 612.7 \text{ level.} \\ &I_{\gamma}: \text{ from } I(\gamma+ce)/(1+\alpha). \ I_{\gamma}=15 \ 1 \ (1973Ja10). \\ &\alpha(K)\exp=0.87 \ 25. \end{aligned}$

ω

From ENSDF

 $^{195}_{78}\text{Pt}_{117}\text{-}3$

 $^{195}_{78}\text{Pt}_{117}\text{-}3$

¹⁹⁵ Ir β^- decay (3.67 h) 1973Ja10 (continued)											
γ ⁽¹⁹⁵ Pt) (continued)											
${\rm E_{\gamma}}^{\#}$	I_{γ}^{ac}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	δ	α^{d}	$I_{(\gamma+ce)}^{c}$	Comments	
211.30 ^{<i>f</i>} 10	20.1 ^{<i>f</i>} 23	211.29	3/2-	0.0	1/2-	M1+E2	+0.38 3	0.738 14	35 4	ce(K)/(γ +ce)=0.343 5; ce(L)/(γ +ce)=0.0628 10; ce(M)/(γ +ce)=0.01470 24; ce(N+)/(γ +ce)=0.00431 7 I _(γ+ce) : from intensity balance at 211 level. Mult.: from α (K)exp=0.73 15 and α (K)exp/ α (L)exp=5 1. δ : from Coul. ex. (1969Ku06). I γ : from I(γ +ce)/(1+ α). Measured I γ =45 2 includes 2.29-h component.	
211.30 ^{<i>f</i>}	2.7 ^{f@}	449.62	(7/2)-	239.20	5/2-	[M1] [‡]		0.801		$\alpha(K)=0.660 \ l0; \ \alpha(L)=0.1085 \ l6; \ \alpha(M)=0.0251 \ 4; \ \alpha(M+)=0.00740 \ l1$	
216.00 10	91	455.12	5/2-	239.20	5/2-	M1(+E2)		0.52 24		$\alpha(K)=0.38\ 24;\ \alpha(L)=0.1028\ 17;\ \alpha(M)=0.0250\ 15;\ \alpha(N+)=0.0072\ 3 \ \alpha(K)=x_{0}=0.0072\ 3 \ 1000000000000000000000000000000000$	
223.7 3	≈0.1	612.65	(7/2)-	389.09	5/2-	[M1] [‡]		0.684		$\alpha(K) = 0.564 \ 9; \ \alpha(L) = 0.0925 \ 14; \ \alpha(M) = 0.0214 \ 3; \ \alpha(N+) = 0.00631 \ 10$	
235.4 3	2.7 5	930.67	9/2-	695.26	(7/2)-	[M1] [‡]		0.594		α (K)=0.490 7; α (L)=0.0803 12; α (M)=0.0185 3; α (N+)=0.00547 8	
239.21 ^{<i>f</i>} 10	17.8 ^{<i>f</i>} 10	239.20	5/2-	0.0	1/2-	E2		0.199		$\alpha(K)=0.1080 \ 16; \ \alpha(L)=0.0683 \ 10; \ \alpha(M)=0.01730 \ 25; \ \alpha(N+)=0.00492 \ 7 \ I_{\gamma}: \ doublet \ I_{\gamma}=19 \ I, \ I_{\gamma}=1.3 \ (\gamma\gamma\text{-coin}) \ deexcites \ 449.7 \ level.$ Mult.: $\alpha(K)exp/\alpha(L)exp=1.0 \ 2 \ is \ close \ to \ E2 \ theory.$	
239.21 ^{<i>f</i>}	1.3 ^{f@}	449.62	(7/2)-	211.29	3/2-	[E2] [‡]		0.199		$\alpha(K)=0.1080 \ 16; \ \alpha(L)=0.0683 \ 10; \ \alpha(M)=0.01730$	
243.87 10	8.0 5	455.12	5/2-	211.29	3/2-	M1		0.539		$\alpha(K)=0.4447; \alpha(L)=0.0728 11; \alpha(M)=0.01681 24; \alpha(N+)=0.004967 \alpha(N+)=0.004967$	
251.61 5	19 2	814.48	9/2-	562.78	9/2-	M1(+E2)		0.33 17		$\alpha(K) = 0.25 \ 16; \ \alpha(L) = 0.061 \ 6; \ \alpha(M) = 0.0148 \ 7; \ \alpha(N+) = 0.0043 \ 3$	
255.79 10	9 1	455.12	5/2-	199.47	3/2-	(M1+E2)		0.32 16		α (K)exp=0.35 10. α (K)=0.24 15; α (L)=0.058 6; α (M)=0.0140 8; α (N+)=0.0041 3	
259.33 15	81	389.09	5/2-	129.75	5/2-	(M1+E2)		0.30 15		$\begin{array}{l} \alpha(K) \exp[=0.24 \ 10. \\ \alpha(K) = 0.23 \ 15; \ \alpha(L) = 0.055 \ 6; \ \alpha(M) = 0.0133 \ 9; \\ \alpha(N+) = 0.0039 \ 4 \\ \alpha(K) \exp[=0.25 \ 10. \end{array}$	
×264.5 5 267.10 <i>15</i>	0.6 <i>I</i> 6 <i>I</i>	814.48	9/2-	547.24	(11/2 ⁺)	E1		0.0344		α (K)=0.0284 4; α (L)=0.00463 7; α (M)=0.001066 15; α (N+)=0.000309 5 α (K)exp<0.06.	
^x 270.7 3	$0.4 \ l$										

From ENSDF

 $^{195}_{78}\text{Pt}_{117}\text{-}4$

 $^{195}_{78}\mathrm{Pt}_{117}\text{-}4$

¹⁹⁵ Ir β^- decay (3.67 h) 1973Ja10 (continued)											
γ ⁽¹⁹⁵ Pt) (continued)											
${\rm E_{\gamma}}^{\#}$	I_{γ}^{ac}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [†]	δ	α^{d}	Comments		
^x 277.0 4	0.4 1										
283.0 5	0.6 2	895.34	9/2-	612.65	(7/2)-	[M1] [‡]		0.358	α (K)=0.295 5; α (L)=0.0483 8; α (M)=0.01114 17; α (N+)=0.00329 5		
287.80 15	10 <i>3</i>	547.24	$(11/2^+)$	259.28	13/2+	(M1+E2)		0.23 12	$\alpha(K)=0.17 \ 11; \ \alpha(L)=0.040 \ 7; \ \alpha(M)=0.0095 \ 12; \ \alpha(N+)=0.0028 \ 4$		
290.30 15	20 1	389.09	5/2-	98.81	3/2-	M1(+E2)		0.22 12	α (K)exp=0.16 8. α (K)=0.17 11; α (L)=0.039 7; α (M)=0.0092 12; α (N+)=0.0027 4 α (K)exp=0.25 6.		
306.48 ^{<i>f</i>}	8.8 ^f	695.26	(7/2)-	389.09	5/2-	[M1] [‡]		0.288	$\alpha(K) = 0.238 \ 4; \ \alpha(L) = 0.0388 \ 6; \ \alpha(M) = 0.00895 \ 13; \ \alpha(N+) = 0.00264 \ 4$ I _{\gamma} : doublet I\gamma = 23 \ 1; I\gamma(M1) = 8.8, I\gamma(E2) = 14.2 deduced from doublet \alpha(K)\arpsi = 0.12 \ 3		
306.48 ^{<i>f</i>} 10 319.90 7	14.2 ^{<i>f</i>} 100 <i>5</i>	814.48 449.62	9/2 ⁻ (7/2) ⁻	508.04 129.75	(7/2) ⁻ 5/2 ⁻	M1+E2	1.5 3	0.135 18	$\alpha(K) = 0.0584; \ \alpha(L) = 0.0265; \ \alpha(M) = 0.00659; \ \alpha(N+) = 0.00202$ $\alpha(K) = 0.101 \ 17; \ \alpha(L) = 0.0260 \ 13; \ \alpha(M) = 0.0063 \ 3;$ $\alpha(N+) = 0.00182 \ 9$ $\alpha(K) = 0.105 \ 15 \ \alpha(K) \exp[\alpha(L) \exp[-4.0, 12]]$		
325.18 10	8 1	455.12	5/2-	129.75	5/2-	[M1] [‡]		0.245	$\alpha(K) = 0.203 \ 3; \ \alpha(L) = 0.0330 \ 5; \ \alpha(M) = 0.00761 \ 11; \ \alpha(N+) = 0.00225 \ 4$		
333.2 5	0.8 3	895.34	9/2-	562.78	9/2-	[M1] [‡]		0.230	$\alpha(X+) = 0.00225 \ \gamma$ $\alpha(K)=0.190 \ 3; \ \alpha(L)=0.0309 \ 5; \ \alpha(M)=0.00712 \ 11; \ \alpha(N+)=0.00210 \ 3$		
350.90 10	10.6 15	449.62	(7/2)-	98.81	3/2-	[E2] [‡]		0.0626	$\alpha(K)=0.0416 \ 6; \ \alpha(L)=0.01594 \ 23; \ \alpha(M)=0.00396 \ 6; \ \alpha(N+)=0.001135 \ 16$		
356.38 15	19 2	455.12	5/2-	98.81	3/2-	M1		0.192	α (K)exp<0.19. α (K)=0.1583 23; α (L)=0.0257 4; α (M)=0.00593 9; α (N+)=0.001750 25		
359.31 15	48 <i>3</i>	814.48	9/2-	455.12	5/2-	E2		0.0586	α (K)exp=0.16 5, α (K)exp/ α (L)exp>3. α (K)=0.0393 6; α (L)=0.01466 21; α (M)=0.00364 6; α (N+)=0.001043 15		
364.94 7	99 <i>3</i>	814.48	9/2-	449.62	(7/2)-	M1+E2	1.5 +5-3	0.094 14	α (K)exp=0.041 <i>15</i> , α (K)exp/ α (L)exp>2. α (K)=0.072 <i>12</i> ; α (L)=0.0170 <i>12</i> ; α (M)=0.00409 <i>24</i> ; α (N+)=0.00119 <i>8</i>		
373.39 15	11 3	612.65	(7/2)-	239.20	5/2-	M1(+E2)		0.11 6	α (K)exp=0.073 <i>12</i> , α (K)exp/ α (L)exp=3.8 <i>12</i> . α (K)=0.09 <i>6</i> ; α (L)=0.018 <i>5</i> ; α (M)=0.0042 <i>11</i> ; α (N+)=0.0012 4		
378.24 10	10 3	508.04	(7/2)-	129.75	5/2-	M1		0.1634	α (K)exp=0.12 5. α (K)=0.1350 19; α (L)=0.0219 3; α (M)=0.00505 7; α (N+)=0.001490 21 α (K)exp=0.15 6.		
383.3 ^e 3 383.3 ^e 3 ^x 385.2 2		814.48 930.67	9/2 ⁻ 9/2 ⁻	432.03 547.24	9/2 ⁺ (11/2 ⁺)						

From ENSDF

 $^{195}_{78}\mathrm{Pt}_{117}\text{-}5$

¹⁹⁵ Ir β^- decay (3.67 h) 1973Ja10 (continued)									
							$\gamma(^{195}\text{Pt})$	(continued)	
${\rm E_{\gamma}}^{\#}$	I_{γ}^{ac}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	α^{d}	Comments	
387.1 2	3.3 3	895.34	9/2-	508.04	(7/2)-			$\alpha(K) = 0.0331; \ \alpha(L) = 0.01146; \ \alpha(M) = 0.00282; \ \alpha(N+) = 0.00086 \ \alpha(K) = 0.30 \ I_{5}$	
^x 389.85 15 ^x 395.7 3	6 2 0.5 5								
401.30 <i>15</i> 409.04 <i>10</i>	3 <i>1</i> 15 <i>1</i>	612.65 508.04	$(7/2)^-$ $(7/2)^-$	211.29 98.81	3/2 ⁻ 3/2 ⁻	[E2] [‡] E2	0.0434 0.0412	α (K)=0.0302 5; α (L)=0.01002 14; α (M)=0.00247 4; α (N+)=0.000709 10 α (K)=0.0289 4; α (L)=0.00940 14; α (M)=0.00231 4; α (N+)=0.000665 10	
^x 413.6 2	2.7 7							$\alpha(K) \exp = 0.029 \ 15.$	
^{419.69} <i>15</i> 422.4 <i>3</i>	4 <i>I</i> 1.4 2	930.67	9/2-	508.04	$(7/2)^{-}$			$\alpha(K)\exp=0.08$ 4, $\alpha(K)\exp(\alpha(L)\exp=2.2$ 7.	
425.41 20 ^x 427.8 2	72 71	814.48	9/2-	389.09	5/2-	[E2] [‡]	0.0372	$\alpha(K)=0.0263$ 4; $\alpha(L)=0.00825$ 12; $\alpha(M)=0.00202$ 3; $\alpha(N+)=0.000583$ 9	
432.86 7	100	562.78	9/2-	129.75	5/2-	E2	0.0356	$\alpha(K)=0.0253 \ 4; \ \alpha(L)=0.00779 \ 11; \ \alpha(M)=0.00191 \ 3; \ \alpha(N+)=0.000550 \ 8 \ \alpha(K)\exp=0.027 \ 5, \ \alpha(K)\exp/\alpha(L)\exp=2.5 \ 8.$	
440.40 10	2.2 5	895.34	9/2-	455.12	5/2-	[E2] [‡]	0.0340	$\alpha(K)=0.0243 4; \alpha(L)=0.00737 11; \alpha(M)=0.00180 3; \alpha(N+)=0.000520 8$ $\alpha(K)=x_0=0.3.2$	
445.55 <i>15</i> 455.94 <i>10</i>	4.9 <i>6</i> 8.1 <i>5</i>	895.34 695.26	9/2 ⁻ (7/2) ⁻	449.62 239.20	(7/2) ⁻ 5/2 ⁻	M1(+E2)	0.07 4	$\alpha(K) = 0.05 \ 3; \ \alpha(L) = 0.010 \ 4; \ \alpha(M) = 0.0023 \ 8; \ \alpha(N+) = 0.00068 \ 22 \ \alpha(K) = 0.08 \ 4.$	
^x 463.6 <i>3</i>	0.6 2								
475.38 <i>15</i> 481.17 <i>10</i>	1.6 <i>3</i> 28 <i>2</i>	930.67 930.67	9/2 ⁻ 9/2 ⁻	455.12 449.62	5/2 ⁻ (7/2) ⁻	[E2] [‡] E2(+M1)	0.0280 0.06 <i>3</i>	α (K)=0.0204 <i>3</i> ; α (L)=0.00578 <i>9</i> ; α (M)=0.001408 <i>20</i> ; α (N+)=0.000406 <i>6</i> α (K)=0.05 <i>3</i> ; α (L)=0.009 <i>3</i> ; α (M)=0.0020 <i>7</i> ; α (N+)=0.00059 <i>20</i> α (K)exp=0.039 <i>16</i> .	
495.8 2 498.6 2	5.3 <i>5</i> 1.2 2	695.26 930.67	$(7/2)^{-}$ 9/2 ⁻	199.47 432.03	3/2 ⁻ 9/2 ⁺	[E2] [‡]	0.0253	$\alpha(K)=0.0186 \ 3; \ \alpha(L)=0.00507 \ 8; \ \alpha(M)=0.001232 \ 18; \ \alpha(N+)=0.000356 \ 5$	
506.16 10 513.6 3 *524.5 3 *526.7 3 *530.1 3 *534.1 2 *537.4 3 *540.4 3 *544.5 5 *548.1 3	$\begin{array}{c} 6.7 \ 5 \\ 0.3 \ l \\ 0.7 \ l \\ 0.3 \ l \\ 0.7 \ 2 \\ 3.6 \ 5 \\ 1.6 \ 5 \\ 0.2 \ l \\ 0.2 \ l \\ 0.3 \ l \end{array}$	895.34 612.65	9/2 ⁻ (7/2) ⁻	389.09 98.81	5/2 ⁻ 3/2 ⁻	[E2] [‡]	0.0240	$\alpha(K)$ =0.01778 25; $\alpha(L)$ =0.00476 7; $\alpha(M)$ =0.001155 17; $\alpha(N+)$ =0.000334 5	
565.48 <i>15</i> 575.35 <i>10</i>	2.3 5 16 <i>3</i>	695.26 814.48	(7/2) ⁻ 9/2 ⁻	129.75 239.20	5/2 ⁻ 5/2 ⁻	[M1] [‡] (E2)	0.0565 0.01773	$\alpha(K)=0.0468$ 7; $\alpha(L)=0.00749$ 11; $\alpha(M)=0.001726$ 25; $\alpha(N+)=0.000509$ 8 $\alpha(K)=0.01346$ 19; $\alpha(L)=0.00326$ 5; $\alpha(M)=0.000785$ 11; $\alpha(N+)=0.000227$ 4 $\alpha(K)\exp=0.03$ 2. Mult: (E2 M1) (10731a10). But A1=2 rules out M1 (evaluator)	
596.48 20 ^x 611.1 3 ^x 613.6 3	2.2 5 0.5 1 0.2 1	695.26	(7/2)-	98.81	3/2-	[E2] [‡]	0.01632	$\alpha(K)=0.01246\ 18;\ \alpha(L)=0.00294\ 5;\ \alpha(M)=0.000706\ 10;\ \alpha(N+)=0.000205\ 3$	

6

From ENSDF

 $^{195}_{78}\text{Pt}_{117}$ -6

$E_{\gamma}^{\#}$	I_{γ}^{ac}	E _i (leve
^x 616.5 <i>3</i>	2.0 4	
^x 619.2 <i>3</i>	0.5 1	
684.88 7	100 5	814.48

,

691.6 3

x715.5 2

x723.7 2

x750.8 2

x784.1 3

 \neg

800.90 10

0.5 1

0.6 2

2.1 5

0.9 1

11 *I*

21

0.01198 $\alpha(K)=0.00935 \ 13; \ \alpha(L)=0.00202 \ 3; \ \alpha(M)=0.000480 \ 7; \ \alpha(N+..)=0.0001396 \ 20$ $\alpha(K)\exp=0.014 3$, $\alpha(K)\exp/\alpha(L)\exp=6 3$.

Comments

1973Ja10 (continued)

[†] From α (K)exp (1973Ja10) normalized to α (L)(98.9 γ)=1.02 (δ =-0.13), except as noted.

[‡] From ΔJ and $\Delta \pi$.

[#] Calibration based partly on $E\gamma = 98.85, 129.70$.

 E_i (level)

930.67

930.67

 J_i^{π}

 $9/2^{-}$

 $9/2^{-}$

 $9/2^{-}$

[@] Weak component via $\gamma\gamma$ -coin.

& Measured Iy with mixed 2.29-h + 3.67-h source. Iy(3.67-h component) calculated to achieve a level intensity balance.

Mult.

E2

 J_f^{π}

 \mathbf{E}_{f}

129.75 5/2-

239.20 5/2-

129.75 5/2-

^{*a*} Relative photon intensity normalized to $I\gamma(E\gamma=432.86)=100$. I(K x ray)=1350 100 for mixed source.

^b From adopted γ 's.

^c For absolute intensity per 100 decays, multiply by 0.098 15.

^d Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁹⁵Ir β^{-} decay (3.67 h)

 α^{d}

 $\gamma(^{195}\text{Pt})$ (continued)

^e Multiply placed with undivided intensity.

^f Multiply placed with intensity suitably divided.

 $x \gamma$ ray not placed in level scheme.

 $^{195}_{78} Pt_{117}\text{--}7$

¹⁹⁵Ir β^- decay (3.67 h) 1973Ja10

Decay Scheme

¹⁹⁵Ir β^- decay (3.67 h) 1973Ja10

Decay Scheme (continued)

