¹⁹⁵Pt IT decay (4.010 d) 1972PoZU

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Huang Xiaolong and Kang Mengxiao	NDS 121, 395 (2014)	1-Mar-2014

Parent: ¹⁹⁵Pt: E=259.29 20; $J^{\pi}=13/2^+$; $T_{1/2}=4.010$ d 5; %IT decay=100.0

 $E\gamma$ and $I\gamma$ measurements with semi from 1972PoZU, except as noted. Similar results obtained by 1967Sc18. Measured I(ce): 1952De34, 1954Co29. γγ-coin: 1952De34, 1954Co29, 1956Po05, 1967Sc18. Sources produced by 194 Pt(n,γ) (1952Hu54) and 194 Pt(d,p) (1976Ya07).

¹⁹⁵Pt Levels

All data are shown in the drawing.

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\ddagger}$	Comments
0.0	1/2-	stable	
98.900 20	$3/2^{-}$		
129.790 20	$5/2^{-}$		
211.35 25	$3/2^{-}$		
239.5 <i>3</i>	$5/2^{-}$		
259.29 20	$13/2^{+}$	4.010 d 5	%IT=100
			E(level): syst with i13/2 isomeric levels of ¹⁹³ Pt, ¹⁹⁷ Pt, ¹⁹⁹ Pt.

 † From decay scheme and Ey using least-squares fit to data.

[‡] From Adopted Levels.

Iγ normalization: From %IT=100.

 \mathbf{b}

Eγ	$I_{\gamma}^{\dagger @}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ	α &	$I_{(\gamma+ce)}^{@}$	Comments
(19.8 <i>CA</i>)		259.29	13/2+	239.5	5/2-	[M4] [#]		6.68×10 ⁸	2.08 7	$ce(L)/(\gamma+ce)=0.566\ 8;\ ce(M)/(\gamma+ce)=0.331\ 6;\ ce(N+)/(\gamma+ce)=0.1033\ 20$ B(M4)(W.u.)=0.13 6 Let extreme for intensity balance at 239 level.
28.1 CA	0.0118 4	239.5	5/2-	211.35	3/2-	[M1] [#]		49.1	0.59 2	$ce(L)/(\gamma+ce)=0.754 \ 8;\ ce(M)/(\gamma+ce)=0.175 \ 4;\ ce(N+)/(\gamma+ce)=0.0515 \ 10$ I _{(\(\y+ce)} : required for intensity balance at 211 level.
30.89 <i>9</i>	20.3 13	129.790	5/2-	98.900	3/2-	M1+E2	-0.021 4	37.6 7	784 46	
98.90 2	100 5	98.900	3/2-	0.0	1/2-	M1+E2	-0.130 4	6.85		$\begin{aligned} &\alpha(L1)\exp \approx 807 \text{ (1954Co29).} \\ &\alpha(K)=5.57 8; \ &\alpha(L)=0.981 14; \ &\alpha(M)=0.228 4; \\ &\alpha(N+)=0.0672 10 \end{aligned}$ $\delta: \text{ from L-subshell ratios (}^{195}\text{Au decay); other} \\ &\delta=-0.16 2 \text{ (1972Ba22) } \gamma\text{-anisotropy.} \\ &(L1+L2)/L3=12.7 18 \text{ (1967Ba39). Other: }11.9 \\ &(1954Co29), \ &30.6 \text{ (}^{195}\text{Au } \varepsilon \text{ decay). } \alpha(\exp)=9 5 \end{aligned}$
129.5 2	0.75 4	259.29	13/2+	129.790	5/2-	M4		1135 <i>19</i>	852 <i>35</i>	(1952De34). ce(K)/(γ +ce)=0.134 3; ce(L)/(γ +ce)=0.613 9; ce(M)/(γ +ce)=0.194 5; ce(N+)/(γ +ce)=0.0576 <i>I</i> 4 B(M4)(W.u.)=1.38 9 E \pm from 1061 <i>K</i> -72. Otherer 120.0 (1054Ce20)
129.79 2	24.8 <i>13</i>	129.790	5/2-	0.0	1/2-	E2		1.727		E _γ : from 1961Kr02. Others: 129.9 (1954Co29), 130.05 32 (1967Ba39). I _γ : from I(γ+ce) and α. I _(γ+ce) : from intensity balance. $\alpha(K)=0.467$ 7; $\alpha(L)=0.947$ 14; $\alpha(M)=0.244$ 4; $\alpha(N+)=0.0690$ 10 I _γ : from doublet I _γ =25.6 13 – I _γ (M4,129.5γ)=0.74 4; other doublet I _γ : 25.6 13 (1972PoZU), 25.5 27 (1967Sc18). Mult.: consistent with K/L=0.44 6, L1,2/L3=1.45
140.6	0.263 13	239.5	5/2-	98.900	3/2-	M1+E2	-0.17 4	2.48		$\alpha(K)=2.03 4; \alpha(L)=0.352 7; \alpha(M)=0.0818 18;$

 $^{195}_{78}Pt_{117}\text{-}2$

¹⁹⁵ Pt IT decay (4.010 d) 1972PoZU (continued)								
γ ⁽¹⁹⁵ Pt) (continued)								
Eγ	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	δ	α &	Comments
211.35 25	0.341 17	211.35	3/2-	0.0 1/2-	M1+E2	+0.38 3	0.737 14	$\begin{array}{l} \alpha(\mathrm{N}+)=0.0241\ 5\\ \mathrm{Other:}\ I\gamma=0.207\ 27\ (1967\mathrm{Sc18}).\\ \mathrm{Mult.:}\ from\ \alpha(\mathrm{L1})\mathrm{exp}/\alpha(\mathrm{L2})\mathrm{exp}/\alpha(\mathrm{L3})\mathrm{exp}=100/10.4\ 14/1.7\ 2\ (1967\mathrm{Ba39}).\\ \delta:\ from\ \mathrm{Coul.\ ex.\ (1959\mathrm{Mc69},1966\mathrm{As02}).}\\ \alpha(\mathrm{K})=0.595\ 13;\ \alpha(\mathrm{L})=0.1090\ 16;\ \alpha(\mathrm{M})=0.0255\ 4;\ \alpha(\mathrm{N}+)=0.00749\ 11\\ \mathrm{E}_{\gamma}:\ \mathrm{av\ of\ 211.1\ 3\ (1967\mathrm{Sc18})\ \mathrm{an\ 211.6\ (1972\mathrm{PoZU}).}\\ \alpha(\mathrm{K})\mathrm{exp:\ 0.48\ 7\ (1967\mathrm{Ba39}),\ 0.73\ 15\ (1973\mathrm{Ja10},\ ^{195}\mathrm{Ir\ }\beta^{-}\ \mathrm{decay}). \end{array}$
239.5 <i>3</i>	0.477 24	239.5	5/2-	0.0 1/2-	E2		0.198	δ: from Coul. ex. (1969Ku06). Other: Iγ=0.315 36 (1967Sc18). α (K)=0.1077 16; α (L)=0.0680 11; α (M)=0.0172 3; α (N+)=0.00490 8 E _γ : from 1967Sc18. Other: 239.6 (1972PoZU). Mult.: from α (K)exp/ α (L)exp=1.0 2 (1973Ja10, 3.8-h ¹⁹⁵ Ir decay). Other: Iγ=0.56 6 (1967Sc18).

[†] Relative intensity normalized to Iγ(Eγ=98.9)=100 5. I(K x ray)=786 72 (1967Sc18).
[‡] From α(K)exp and α(L)exp, except as noted.
[#] From ΔJ and Δπ.
[@] For absolute intensity per 100 decays, multiply by 0.117 6.
[&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

From ENSDF

¹⁹⁵₇₈Pt₁₁₇-4

¹⁹⁵₇₈Pt₁₁₇