¹⁹²Os(⁷Li,p3n γ) 2011Fa08

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Huang Xiaolong and Kang Mengxiao	NDS 121, 395 (2014)	1-Mar-2014

2011Fa08: ⁷Li beam, E=44 MeV produced by the HI-13 Tandem Accelerator at the China Institute of Atomic Energy (CIAE), Beijing. Target=1.7 mg/cm² enriched metallic ¹⁹²Os foil backed by a 1.1 mg/cm² carbon layer. Gamma rays detected by twelve Compton-suppressed HPGe detectors and low-energy photons by two planar detectors. Measured $E\gamma$, $I\gamma$, angular distribution, X- γ -t and γ - γ -t coincidences. Deduced levels, J, π and bands.

Transition assignment to ¹⁹⁵Pt based on coincidences with characteristic Pt x rays and on an understanding of the reaction channel cross sections.

¹⁹⁵Pt Levels

E(level) [†]	J^{π}	T _{1/2}	Comments
259.30 [‡]	13/2+	4.010 d 5	%IT=100 Additional information 1. E(level), $T_{1/2}$: from Adopted Levels. This level decays by 129.5 – 129.8 γ cascade to g.s. of ¹⁹⁵ Pt.
628.1 [‡] 5	$17/2^{+}$		
758.5 [#] 5	$15/2^{+}$		
1187.6 [#] 5	19/2+		
1206.2 [‡] 6	$21/2^+$		
1392.0 [@] 6	$21/2^{-}$		
1535.9 [@] 8	$25/2^{-}$		
1915.8 [‡] 8	$(25/2^+)$		
1947.5 [@] 10	29/2-		
2592.8 [@] 11	33/2-		

[†] From a least-squares fit to $E\gamma$ data. [‡] Band(A): $\nu i_{13/2}^{-1}$ sequence based on 259 level, $\alpha = +1/2$.

[#] Band(a): $vi_{13/2}^{-1}$ sequence based on 759 level, $\alpha = -1/2$.

^(a) Band (B): Band based on $21/2^-$. 2011Fa08 propose it is associated with the $\nu i \frac{2}{13/2} \otimes \nu j^{-1}$, where $j = p_{3/2}$ or $f_{5/2}$ configuration.

$\gamma(^{195}\text{Pt})$

The angular distribution asymmetry ratios R_{ADO} listed below is defined by $R_{ADO}=I\gamma(35^{\circ})/I\gamma(90^{\circ})$.

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Comments
143.9 5	27 4	1535.9	25/2-	1392.0	$21/2^{-}$	
185.7 5	29 <i>3</i>	1392.0	$21/2^{-}$	1206.2	$21/2^{+}$	R _{ADO} =1.29 17.
204.5 5	47 6	1392.0	$21/2^{-}$	1187.6	$19/2^{+}$	R _{ADO} =0.76 8.
368.8 5	100 8	628.1	$17/2^{+}$	259.30	$13/2^{+}$	R _{ADO} =1.26 <i>13</i> .
411.6 5	30 4	1947.5	29/2-	1535.9	$25/2^{-}$	R _{ADO} =1.32 15.
429.0 5	47 6	1187.6	$19/2^{+}$	758.5	$15/2^{+}$	R _{ADO} =1.4 3.
499.2 5	35 4	758.5	$15/2^{+}$	259.30	$13/2^{+}$	R _{ADO} =0.61 11.
559.6 5	74 6	1187.6	$19/2^{+}$	628.1	$17/2^{+}$	R _{ADO} =0.50 <i>6</i> .
578.1 5	64 5	1206.2	$21/2^{+}$	628.1	$17/2^{+}$	R _{ADO} =1.49 20.
645.3 5	23 <i>3</i>	2592.8	33/2-	1947.5	29/2-	R _{ADO} =1.34 <i>37</i> .
709.6 5	12 2	1915.8	$(25/2^+)$	1206.2	$21/2^+$	

¹⁹⁵₇₈Pt₁₁₇

