Adopted Levels, Gammas

				Hist	ory							
	Туре			Author		Citation	Literature Cutoff Date					
	Full Eva	aluation	Huang Xiao	olong and Kang Mengx	ao N	NDS 121, 395 (2014)	1-Mar-2014					
$Q(\beta^{-}) = -759 \times 10^{1} 4$; $S(n) = 813 \times 10^{1} 4$; $S(p) = 231 \times 10^{1} 6$; $Q(\alpha) = 6750 3$ 2012Wa38												
¹⁹⁵ Po Levels												
Cross Reference (XREF) Flags												
			A B C	¹⁹⁹ Rn α decay (0.59 s ¹⁹⁹ Rn α decay (0.31 s (HI,xn γ)) D) E	238 U(p,X): $\Delta < r^2 >$ 113 Cd(86 Kr,4n γ)						
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF			Comments						
0.0	(3/2 ⁻)	4.64 s 9	ABCD	$\% \alpha = 94 \ 4 \ (2010 \ Co13)$ $\mu = -0.601 \ 42 \ (2014 \ Sec$ $Q = -0.87 \ 25 \ (2014 \ Sec$ $E(level): g.s. assignmentJ^{\pi}: from systematics ($; % <i>ɛ</i> +9 07) 07) ent base 1980Sc	$76\beta^+=6.4$ ed on $E\alpha$ systematics (26). Spin consistent	and 1997Fo06. with optical hyperfine spectrum					
- 2002	(5/2-)			shown in Fig. 5 of $T_{1/2}$: from α (t) measure (2005Uu02). For ¹⁹⁵ Po α decay spectrum $\Delta < r^2 > (^{195}Po, ^{210}Po) = -$ only. μ ,Q: hyperfine structure CERN-ISOLDE fact and 0.15 for Q, and $< \beta_2^2 > ^{1/2} = 0.18$ (2013).	2014Se rement ectrosco -0.604 re studi ility (2 system c03,201	07. (1993Wa04). Others: ppy see 1997Fo06. fm ² 13 (2013Se03). ' es using in-source res 014Se07). Total (stati natic) uncertainties are 4Se07).	4.5 s 5 (1967Si09), 3.9 s +32-12 The uncertainties are statistical sonance ionization spectroscopy at stical uncertainties=0.013 for μ e given.					
≈2007 ≈230 [#]	(3/2) (13/2 ⁺)	1.92 s 2	BCDE	$ \begin{aligned} & \beta = 0, & \beta = 0, & \beta = 0, \\ & \beta = 0, \\$								
549.3 [#] 5 656.4 5 937.4 [#] 7 1059.5 6 1431.7 [#] 9 2020.7 [#] 13	17/2 ⁺ (15/2 ⁺) 21/2 ⁺ (19/2 ⁺) 25/2 ⁺ (29/2 ⁺)	30 ps 8	C E C C C C C	$\gamma \mu_2 \gamma^{-1} = 0.16$ (2013) T _{1/2} : from 2009Gr05, recoil-decay tagged	recoil- γ -ray s	distance Doppler-shif spectra and differentia	t method. Analysis was that of l decay curve method.					

Adopted Levels, Gammas (continued)

¹⁹⁵Po Levels (continued)

[†] From Eγ, except as noted.
[‡] From syst of odd-mass Po.
[#] Band(A): 13/2⁺ band.

γ ⁽¹⁹⁵Po)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger\ddagger}$	E_f	\mathbf{J}_{f}^{π}	Comments
549.3	17/2+	319.1 5	100	≈230	$(13/2^+)$	B(E2)(W.u.)=80 20
656.4	$(15/2^+)$	426.6 [#] 5	100	≈230	$(13/2^+)$	
937.4	$21/2^+$	388.1 5	100	549.3	$17/2^{+}$	
1059.5	$(19/2^+)$	404 [#] 1	44 8	656.4	$(15/2^+)$	
		510.0 [#] 5	100 23	549.3	$17/2^{+}$	
1431.7	$25/2^+$	494.3 5	100	937.4	$21/2^+$	
2020.7	$(29/2^+)$	589 <i>1</i>	100	1431.7	$25/2^+$	

[†] From (HI,xnγ).
[‡] Relative intensity from each levels.
[#] Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

Legend

Adopted Levels, Gammas

¹⁹⁵₈₄Po₁₁₁