(HI,xnγ) **1986L005**

History

Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Huang Xiaolong and Kang Mengxiao	NDS 121, 395 (2014)	1-Mar-2014	

1986Lo05: ¹⁸²W(¹⁹F,6n γ) E=85-130 MeV, in steps of 10 MeV, and ¹⁶⁹Tm(³⁰S,4n γ) E=142 MeV; subsequent γ -ray emission was studied using in-beam γ timing spectroscopic methods including excitation functions, $\gamma(\theta) \theta=45^{\circ} - 160^{\circ}$, $\gamma\gamma(t)$, ce, and pulsed-beam γ timing with Ge(Li) and Si(Li); interpreted within shell-model framework; compared with intruder states.

105

¹⁹⁵ Bi Lev	els
-----------------------	-----

E(level) [†]	$J^{\pi #}$	T _{1/2} @	Comments
0.0‡	$(9/2^{-})^{\ddagger}$		configuration= π h9/2 + 2 ν 0 ⁺ .
887.9 10	$(13/2^+)$	32 ns 2	configuration= $\pi i 13/2 + 2\nu 0^+$.
1232.2 15	$(15/2^{-})$		$configuration = \pi h9/2 + 2\nu 4^+$.
1623.9 18	$(17/2^+)$		$configuration = \pi h9/2 + 2\nu 5^{-}$.
2044.9 20	$(21/2^+)$		$configuration = \pi h9/2 + 2\nu 7^{-}$.
2196.2 23	$(25/2^+)$	80 ns 10	$configuration = \pi h9/2 + 2\nu 9^{-}$.
2311.4 25	$(27/2^+)$		$configuration = \pi h9/2 + 2\nu 9^{-}$.
2311.4+x? 25	$(29/2^{-})$	750 ns 50	E(level): seen in all of the time curve measurements. The existence is inferred, although no
			low-energy γ -ray seen.

[†] From $E\gamma$'s by using least-squares fit to data.

[‡] From Adopted Levels.

[#] Based on the $\gamma(\theta)$, T_{1/2}, ce, and systematic properties of the odd-A Bi isotopes; assignments are tentative because presumed $9/2^-$ ground state (π h9/2).

 $\gamma(^{195}\text{Bi})$

[@] From pulsed-beam timing measurements.

E_{γ}^{\dagger}	I_{γ}	E _i (level)	J_i^π	E_f	J_f^π	Mult.	α #	Comments
115.2	53	2311.4	$(27/2^+)$	2196.2	$(25/2^+)$	(M1)	6.80	$\alpha(K)=5.53 \ 8; \ \alpha(L)=0.972 \ 14; \ \alpha(M)=0.229 \ 4;$
151.3	20 4	2196.2	(25/2+)	2044.9	(21/2 ⁺)	(E2)	1.250	$\alpha(N+)=0.0719\ 10$ $\alpha(K)=0.302\ 5;\ \alpha(L)=0.705\ 10;\ \alpha(M)=0.186\ 3;$ $\alpha(N+)=0.0569\ 8$
344.3	84 6	1232.2	(15/2 ⁻)	887.9	(13/2+)	(E1)	0.0222	$\gamma(\theta)$: $A_2 \approx 0$. $\alpha(K) = 0.0182$ 3; $\alpha(L) = 0.00307$ 5; $\alpha(M) = 0.000719$ 10; $\alpha(N+) = 0.000223$ 4 Mult.: dipole from $\gamma(\theta)$ measurements. The 344- and 392-keV stretched dipoles have to be either both E1 or both M1 transitions. The proposed E1 is based on systematics of J^{π} for 888-, 1323- and 1624-keV levels, and a slight preference for 344-keV E1 by the conversion measurements
391.7	67 6	1623.9	(17/2+)	1232.2	(15/2 ⁻)	(E1)	0.01669	$ γ(θ): A_2 = -0.20 7; A_4 = +0.2 2. $ α(K) = 0.01371 20; α(L) = 0.00228 4; α(M) = 0.000533 8; α(N+) = 0.0001655 24 Mult.: see notes of 344.3-keV γ transition.
421.0	62 6	2044.9	(21/2+)	1623.9	(17/2 ⁺)	(E2)	0.0471	$\gamma(\theta)$: A ₂ =-0.25 7; A ₄ =+0.03 9. $\alpha(K)$ =0.0309 5; $\alpha(L)$ =0.01213 17; $\alpha(M)$ =0.00307 5; $\alpha(N+)$ =0.000947 14
887.9	100	887.9	(13/2 ⁺)	0.0	(9/2 ⁻)	M2(+E3)	0.043 22	$\gamma(\sigma)$: A ₂ =+0.42 σ ; A ₄ =-0.40 9. $\alpha(K)$ =0.0534, $\alpha(L)$ =0.01024, α =0.0670 if mult=M2; $\alpha(K)$ =0.01548, $\alpha(L)$ =0.00482,

Continued on next page (footnotes at end of table)

(HI,xn γ) **1986Lo05** (continued)

 $\gamma(^{195}\text{Bi})$ (continued)

 $E_{\gamma}^{\dagger} = E_i$ (level)

Comments

 α =0.02189 if mult=E3; α from α (M2). α (K)exp=0.082 *15*. $\gamma(\theta)$: A₂=+0.09 *7*; A₄=+0.02 *10*.

[†] ΔE not given by authors.

^{\ddagger} Relative intensities normalized to I γ (887.9 keV)=100. I γ of the 115.2 and 151.3 keV transitions estimated from the coin spectra.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁹⁵₈₃Bi₁₁₂