## Adopted Levels, Gammas

|                                      |                              |                                                          |            |                                                                                                                                     | History                          |                  |                                           |                                                                   |  |  |  |  |  |  |
|--------------------------------------|------------------------------|----------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------|-------------------------------------------|-------------------------------------------------------------------|--|--|--|--|--|--|
|                                      | Туре                         |                                                          | Author     |                                                                                                                                     |                                  |                  | Citation                                  | Literature Cutoff Date                                            |  |  |  |  |  |  |
|                                      | Full Eva                     | aluation                                                 | Huang Xiao | long and Kan                                                                                                                        | g Mengxiao                       | NDS              | 121, 395 (2014)                           | 1-Mar-2014                                                        |  |  |  |  |  |  |
| $O(\beta^{-}) = -696 \times 10^{10}$ | 4; $S(n) =$                  | 10060 SY;                                                | S(p)=1107  | 18; $O(\alpha) = 583$                                                                                                               | 2 5 <b>2012V</b>                 | Va38             |                                           |                                                                   |  |  |  |  |  |  |
|                                      |                              |                                                          |            |                                                                                                                                     | 105                              |                  |                                           |                                                                   |  |  |  |  |  |  |
|                                      |                              |                                                          |            |                                                                                                                                     | <sup>195</sup> Bi Leve           | ls               |                                           |                                                                   |  |  |  |  |  |  |
|                                      | Cross Reference (XREF) Flags |                                                          |            |                                                                                                                                     |                                  |                  |                                           |                                                                   |  |  |  |  |  |  |
|                                      | 181-20                       |                                                          |            |                                                                                                                                     |                                  |                  |                                           |                                                                   |  |  |  |  |  |  |
|                                      |                              | $\begin{array}{c} A \\ B \\ (HI \text{ yp}) \end{array}$ |            |                                                                                                                                     |                                  |                  |                                           |                                                                   |  |  |  |  |  |  |
|                                      |                              |                                                          |            | $\begin{array}{l} B \qquad (HI,xn\gamma) \\ C \qquad \qquad 1^{199} \text{ At } \alpha \text{ decay } (6.92 \text{ s}) \end{array}$ |                                  |                  |                                           |                                                                   |  |  |  |  |  |  |
|                                      |                              |                                                          |            | D 1                                                                                                                                 | $^{99}$ At $\alpha$ decay        | (0.31 s          | s)                                        |                                                                   |  |  |  |  |  |  |
|                                      |                              |                                                          |            |                                                                                                                                     |                                  | (                | - /                                       |                                                                   |  |  |  |  |  |  |
| E(level) <sup>†</sup>                | J <sup>π</sup> ‡             | T <sub>1/2</sub> #                                       | XREF       |                                                                                                                                     |                                  |                  | Comments                                  |                                                                   |  |  |  |  |  |  |
| 0.0                                  | [9/2 <sup>-</sup> ]          | 183 s 4                                                  | ABC        | %α=0.03 2;                                                                                                                          | $\%\varepsilon + \%\beta^+ = 99$ | 9.97 2           |                                           |                                                                   |  |  |  |  |  |  |
|                                      |                              |                                                          |            | $\%\alpha,\%\varepsilon+\%\beta$<br>(1990 \ n7                                                                                      | T: from $\%\alpha$ =             | 0.01-0.          | .05 (1985Co06). (<br>1986Br70 1974)       | Others: $\%\alpha \le 0.02$                                       |  |  |  |  |  |  |
|                                      |                              |                                                          |            | $J^{\pi}$ : from she                                                                                                                | ell model ( $198$                | 36Lo05           | ). Configuration=                         | $\pi h9/2 + \nu 0^+$ (1986Lo05).                                  |  |  |  |  |  |  |
|                                      |                              |                                                          |            | $T_{1/2}$ : from a                                                                                                                  | x(t) measuren                    | nent in          | <sup>195</sup> Bi $\alpha$ decay (18      | 83 s) (1985Co06). Others: 187                                     |  |  |  |  |  |  |
| 401.7                                | [1/2+]                       | 87 s 1                                                   | л          | s 4 (1984)<br>% = 33, 17                                                                                                            | Col3), 170 s                     | 20 (19<br>17     | 74Le02), 240 s (1                         | 970Ta14).                                                         |  |  |  |  |  |  |
| 401 /                                | [1/2]                        | 0/ 5 1                                                   | U          | $\%\alpha = 35 17,$<br>$\%\alpha,\%\varepsilon + \%\beta$                                                                           | +: from $\%\alpha$ =             | 16- 49           | (1985Co06). Oth                           | hers: $\%\alpha = 4$ (1974Le02), 3.9                              |  |  |  |  |  |  |
|                                      |                              |                                                          |            | (1972Ga2                                                                                                                            | 7). No evider                    | nce of I         | T decay has been                          | observed (from systematics                                        |  |  |  |  |  |  |
|                                      |                              |                                                          |            | (1980Sc20)                                                                                                                          | b), the largest                  | B(M4)<br>hat lim | )(W.u.)(s1/2 to h9<br>it is valid here th | (2) observed in this mass region<br>with $E_{2}$ -401 7           |  |  |  |  |  |  |
|                                      |                              |                                                          |            | $\alpha(401\gamma) = \alpha$                                                                                                        | 5.6 4, where                     | the unc          | ertainty comes fro                        | for uncertainty in $E\gamma$ , and                                |  |  |  |  |  |  |
|                                      |                              |                                                          |            | T <sub>1/2</sub> =87 s                                                                                                              | 1, one gets $q$                  | %IT<6.           | ).                                        |                                                                   |  |  |  |  |  |  |
|                                      |                              |                                                          |            | E(level): from she                                                                                                                  | m <sup>195</sup> Bi $\alpha$ de  | cay (87          | 7 s). $\pi s 1/2$ intrude                 | ar state (1985Ca06)                                               |  |  |  |  |  |  |
|                                      |                              |                                                          |            | $T_{1/2}$ : from a                                                                                                                  | x(t) measuren                    | nent $(19)$      | 985Co06). Others                          | : 90  s 5 (1974 Le02), 100  s 15                                  |  |  |  |  |  |  |
| 0                                    |                              |                                                          |            | (1984Co1                                                                                                                            | 3).                              |                  |                                           |                                                                   |  |  |  |  |  |  |
| 886.7 2                              | 13/2+                        | 32 ns 2                                                  | AB         | Configuratio                                                                                                                        | $n = \pi i 13/2 + v 0$           | + (1986          | 5Lo05).                                   |                                                                   |  |  |  |  |  |  |
| 1230.39 <sup><b>x</b></sup> 14       | $15/2^+$                     |                                                          | AB         |                                                                                                                                     |                                  |                  |                                           |                                                                   |  |  |  |  |  |  |
| 153/.84<br>1621.82 22                | $17/2^{(1)}$                 |                                                          | A<br>AP    | Configuratio                                                                                                                        | $n = \pi h 0/2 + 15^{-1}$        | (1004            | L -05)                                    |                                                                   |  |  |  |  |  |  |
| 2043 50 <sup>&amp;</sup> 22          | 19/2 <sup>+</sup>            |                                                          | AD<br>AR   | Configuratio                                                                                                                        | n=nn9/2+V3                       | (1900            | L003).                                    |                                                                   |  |  |  |  |  |  |
| 2194.3 3                             | $\frac{13}{23}$              | 80 ns 1                                                  | 0 AB       |                                                                                                                                     |                                  |                  |                                           |                                                                   |  |  |  |  |  |  |
| 2309.2 5                             | $25/2^{(-)}$                 |                                                          | AB         |                                                                                                                                     |                                  |                  |                                           |                                                                   |  |  |  |  |  |  |
| 2395.5 5                             | $(29/2^{-})$                 | 750 ns 5                                                 | O AB       | $T_{1/2}$ : Others                                                                                                                  | s: 0.625 us +2                   | 2013 - 2         | 08 (2003Gl05),0.                          | 71 us 28 (2004Gl04).<br>$\pi h \theta/2 \pm v 12^{+}$ (1986L 205) |  |  |  |  |  |  |
| 2465.20 <sup>&amp;</sup> 24          | $(21/2^+)$                   |                                                          | Α          | J . 110111 SHC                                                                                                                      |                                  | 00000            | . comgutation=                            | (1700L003).                                                       |  |  |  |  |  |  |
| 2922.6 <sup>&amp;</sup> 7            | $(23/2^+)$                   |                                                          | A          |                                                                                                                                     |                                  |                  |                                           |                                                                   |  |  |  |  |  |  |
| y <b>@</b>                           | J                            |                                                          | В          |                                                                                                                                     |                                  |                  |                                           |                                                                   |  |  |  |  |  |  |
| 261.5+y <sup>@</sup>                 | J+2                          |                                                          | В          |                                                                                                                                     |                                  |                  |                                           |                                                                   |  |  |  |  |  |  |
| 562.9+y <sup>@</sup>                 | J+4                          |                                                          | В          |                                                                                                                                     |                                  |                  |                                           |                                                                   |  |  |  |  |  |  |
| 904.8+y@                             | J+6                          |                                                          | В          |                                                                                                                                     |                                  |                  |                                           |                                                                   |  |  |  |  |  |  |
| 1285.5+y@                            | J+8                          |                                                          | В          |                                                                                                                                     |                                  |                  |                                           |                                                                   |  |  |  |  |  |  |
| 1706.1+y                             | J+10                         |                                                          | В          |                                                                                                                                     |                                  |                  |                                           |                                                                   |  |  |  |  |  |  |
| 2164.0+y                             | J+12                         |                                                          | B          |                                                                                                                                     |                                  |                  |                                           |                                                                   |  |  |  |  |  |  |
| 2659.0+y                             | J+14                         |                                                          | В          |                                                                                                                                     |                                  |                  |                                           |                                                                   |  |  |  |  |  |  |

Continued on next page (footnotes at end of table)

#### Adopted Levels, Gammas (continued)

#### <sup>195</sup>Bi Levels (continued)

<sup>†</sup> For the states connected with  $E\gamma$ , E(level) are from  $E\gamma$  using least-squares fit to data.

- <sup>‡</sup> Based on  $\gamma(\theta)$ , T<sub>1/2</sub>, ce, and systematic properties of the odd-A Bi isotopes; assignments are tentative because presumed 9/2<sup>-</sup> ground state ( $\pi$  h9/2) is not firmly established. Assignments are from <sup>181</sup>Ta(<sup>20</sup>Ne,6n $\gamma$ ), except as noted.  $J^{\pi}$  for SD band members from band membership. SD band assignment from configuration with neighboring nuclei.
- <sup>#</sup> From  $\gamma(t)$  pulsed-beam timing measurements in (HI,xn $\gamma$ ), except as noted.

<sup>(a)</sup> Band(A): SD band (1996Cl01). Percent population  $\approx 0.7$  (1996Cl01) relative to 888 $\gamma$  (g.s. transition from 13/2<sup>+</sup>).

<sup>&</sup> Band(B): *π*i<sub>13/2</sub> g.s. band (2012Pa18).

| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$ | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\ddagger}$ | $\mathbf{E}_{f}$ | $\mathrm{J}_f^\pi$  | Mult. <sup>#</sup> | α <b>&amp;</b> | Comments                                                    |
|------------------------|--------------------|------------------------|-------------------------|------------------|---------------------|--------------------|----------------|-------------------------------------------------------------|
| 886.7                  | 13/2+              | 886.7 1                | 100                     | 0.0              | [9/2 <sup>-</sup> ] | M2                 | 0.0648         | B(M2)(W.u.)=0.049 3<br>$\alpha$ (K)exp=0.082 15 (1986Lo05). |
| 1230.39                | $15/2^{+}$         | 343.7 1                | 100                     | 886.7            | $13/2^{+}$          | M1+E2              | 0.20 12        |                                                             |
| 1537.8                 | $17/2^{(+)}$       | 307.4 <i>3</i>         | 100                     | 1230.39          | $15/2^{+}$          | (M1+E2)            | 0.27 17        |                                                             |
| 1621.83                | $17/2^{+}$         | 391.3 2                | 100 8                   | 1230.39          | $15/2^{+}$          | M1+E2              | 0.14 9         |                                                             |
|                        |                    | 734.7 6                | 18 4                    | 886.7            | $13/2^{+}$          | (E2)               | 0.01301        |                                                             |
| 2043.59                | $19/2^{+}$         | 421.7 <i>1</i>         | 100 22                  | 1621.83          | $17/2^{+}$          | M1+E2              | 0.12 7         |                                                             |
|                        |                    | 813.6 <i>3</i>         | 15 3                    | 1230.39          | $15/2^{+}$          | (E2)               | 0.01054        |                                                             |
| 2194.3                 | $23/2^{+}$         | 150.7 2                | 100                     | 2043.59          | 19/2+               | E2                 | 1.269          | B(E2)(W.u.)=0.60 8                                          |
| 2309.2                 | $25/2^{(-)}$       | 114.9 <i>3</i>         | 100                     | 2194.3           | $23/2^{+}$          | E1                 | 0.316          |                                                             |
| 2395.5                 | $(29/2^{-})$       | 86.3 2                 | 100                     | 2309.2           | $25/2^{(-)}$        | E2                 | 12.61 23       | B(E2)(W.u.)=0.172 12                                        |
| 2465.20                | $(21/2^+)$         | 421.6 <i>1</i>         | 100 13                  | 2043.59          | $19/2^{+}$          | (M1+E2)            | 0.12 7         |                                                             |
|                        |                    | 843.6 4                | 72 21                   | 1621.83          | $17/2^{+}$          | (E2)               | 0.00980        |                                                             |
| 2922.6                 | $(23/2^+)$         | 457.4 6                | 100 5                   | 2465.20          | $(21/2^+)$          | M1+E2              | 0.09 6         |                                                             |
| 261.5+y                | J+2                | 261.5 5                | 1.04 <sup>@</sup> 10    | У                | J                   |                    |                |                                                             |
| 562.9+y                | J+4                | 301.4 5                | 0.93 <sup>@</sup> 10    | 261.5+y          | J+2                 |                    |                |                                                             |
| 904.8+y                | J+6                | 341.9 5                | 1.04 <sup>@</sup> 10    | 562.9+y          | J+4                 |                    |                |                                                             |
| 1285.5+y               | J+8                | 380.7 5                | 1.00 <sup>@</sup> 10    | 904.8+y          | J+6                 |                    |                |                                                             |
| 1706.1+y               | J+10               | 420.6 5                | 0.96 <sup>@</sup> 10    | 1285.5+y         | J+8                 |                    |                |                                                             |
| 2164.0+y               | J+12               | 457.9 5                | 0.84 <sup>@</sup> 10    | 1706.1+y         | J+10                |                    |                |                                                             |
| 2659.0+y               | J+14               | 495 1                  | 0.33 <sup>@</sup> 8     | 2164.0+y         | J+12                |                    |                |                                                             |

<sup>†</sup> From <sup>181</sup>Ta(<sup>20</sup>Ne,6nγ).

<sup>‡</sup> Relative photon branching renormalized to 100 for the strongest branching from each level. For SD band, values are relative transition intensities within the band. <sup>#</sup> From DCO value in  ${}^{181}\text{Ta}({}^{20}\text{Ne},6n\gamma)$ .

<sup>@</sup> Relative transition intensity within the band.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

# $\gamma(^{195}\text{Bi})$

### Adopted Levels, Gammas

## Level Scheme

#### Intensities: Relative photon branching from each level



## Adopted Levels, Gammas



