¹⁸¹Ta(²⁰Ne,6nγ) 2012Pa18,1996Cl01

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Huang Xiaolong and Kang Mengxiao	NDS 121, 395 (2014)	1-Mar-2014				

1996Cl01: E=123 MeV. Measured Eγ, Iγ, γγγ with EUROGAM array (36 Compton suppressed detectors). Deduced SD band.
2012Pa18: ²⁰Ne beam at E=130 MeV from the K130 cyclotron. Target=14.5 mg/cm² ¹⁸¹Ta. Gamma rays were detected by the INGA array consisting of eight clover HPGe detectors. Measured Eγ, Iγ, γγ-coin, γ(θ), DCO, γγ(lin pol). Deduced levels J, π, configurations, bands, multipolarity. Comparison with total Routhian surfaces (TRS) using the Woods-Saxon potential. Systematics of level energies in odd-odd Bi nuclei and even-even Pb nuclei.

¹⁹⁵ Bi	Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ^{<i>a</i>}	Comments
0.0	(9/2 ⁻)		J^{π} : from Adopted Levels.
886.70 [@] 10	$13/2^{+}$	32 ns 2	
1230.39 [@] 14	15/2+ #		
1537.8 4	17/2 ^{(+)#}		
1621.83 [@] 22	17/2+ #		
2043.59 [@] 22	19/2+ [#]		
2194.3 <i>3</i>	23/2+ [#]	80 ns 10	
2309.2 5	$25/2^{(-)#}$		
2395.5? 5	29/2(-)		$T_{1/2}$: this level may correspond to 750 ns 50 isomer listed at 2311.4+x in Adopted level.
2465.20 [@] 24	$(21/2^+)^{\#}$		
2922.6 [@] 7	$(23/2^+)^{\#}$		
у &	J		
261.5+y ^{&} 5	J+2		
562.9+y& 7	J+4		
904.8+y& 9	J+6		
1285.5+y ^{&} 10	J+8		
1706.1+y& <i>12</i>	J+10		
2164.0+y& <i>13</i>	J+12		
2659.0+y ^{&} 16	J+14		

[†] From least-squares fit to $E\gamma$ data.

[‡] From least-squares fit to transition $E\gamma$'s with SD band by using rotational model, except as noted.

[#] From $\gamma(\theta)$ and or band structure.

[@] Band(A): $\pi i_{13/2}$ g.s. band (2012Pa18).

& Band(B): SD band (1996Cl01). Percent population ≤ 0.7 (1996Cl01) relative to 888 γ (g.s. transition from 13/2⁺). Band is expected to be band on favored (α =-1/2) signature of quasi-proton orbital [651]1/2(i11/2) (1996Cl01).

^a From Adopted Levels.

$\gamma(^{195}\text{Bi})$

DCO values are for gate on 886.7, $\Delta J=2$, M2 transition unless otherwise specified. Expected DCO values are: 1.84 for $\Delta J=1$, dipole when gated by $\Delta J=2$, quadrupole transition.

			¹⁸¹ T	a(²⁰ Ne,6nγ)) 2012	Pa18,1996Cl	01 (continue	d)
		γ ⁽¹⁹⁵ Bi) (continued)		(continued)				
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	E_{f}	J_f^π	Mult.	α #	Comments
86.3 2	9.3 15	2395.5?	29/2 ⁽⁻⁾	2309.2	25/2 ⁽⁻⁾	E2	12.61 23	α (L)=9.36 <i>17</i> ; α (M)=2.49 <i>5</i> ; α (N)=0.632 <i>12</i> ; α (O)=0.1162 <i>21</i> DCO=1.04 <i>20</i>
114.9 <i>3</i>	9.7 11	2309.2	25/2 ⁽⁻⁾	2194.3	23/2+	E1	0.316	$\alpha(\text{M})=0.251 \; 4; \; \alpha(\text{L})=0.0496 \; 8;$ $\alpha(\text{M})=0.01173 \; 19; \; \alpha(\text{N})=0.00295$
150.7 2	10.8 9	2194.3	23/2+	2043.59	19/2+	E2	1.269	DCO=1.4 3 $\alpha(K)=0.304$ 5; $\alpha(L)=0.717$ 11; $\alpha(M)=0.190$ 3; $\alpha(N)=0.0483$ 8 DCO=1.08 20
261.5 [‡] 5	1.04 [‡] 10	261.5+y	J+2	У	J			
301.4 [‡] 5	0.93 [‡] 10	562.9+y	J+4	261.5+y	J+2			
307.4 3	9.6 11	1537.8	17/2 ⁽⁺⁾	1230.39	15/2+	(M1+E2)	0.27 17	α(K)=0.21 <i>15</i> ; α(L)=0.049 <i>12</i> ; α(M)=0.0120 <i>24</i> ; α(N)=0.0031 7 DCO=1.6 <i>3</i>
341.9 [‡] 5 343.7 <i>1</i>	1.04 [‡] 10 48 4	904.8+y 1230.39	J+6 15/2 ⁺	562.9+y 886.70	J+4 13/2 ⁺	M1+E2	0.20 12	α(K)=0.15 <i>11</i> ; α(L)=0.035 <i>11</i> ; α(M)=0.0084 <i>22</i> ; α(N)=0.0022 <i>6</i> DCO=1.24 <i>7</i> POL=-0.09 <i>3</i> .
380.7 [‡] 5 391.3 2	1.00 [‡] 10 38 3	1285.5+y 1621.83	J+8 17/2 ⁺	904.8+y 1230.39	J+6 15/2 ⁺	M1+E2	0.14 9	α(K)=0.11 8; α(L)=0.024 8; α(M)=0.0057 18; α(N)=0.0015 5 DCO=1.46 12 POL=-0.08 3.
420.6 [‡] 5 421.6 <i>I</i>	0.96 [‡] <i>10</i> 6.1 8	1706.1+y 2465.20	J+10 (21/2 ⁺)	1285.5+y 2043.59	J+8 19/2 ⁺	(M1+E2)	0.12 7	α (K)=0.09 6; α (L)=0.019 7; α (M)=0.0046 15; α (N)=0.0012 4 DCO=1.33 18 I _{γ} : uncertainty of 8.0 in table I of
421.7 <i>1</i>	37 8	2043.59	19/2+	1621.83	17/2+	M1+E2	0.12 7	$\alpha(K)=0.09 \ 6; \ \alpha(L)=0.019 \ 7; \ \alpha(M)=0.0046 \ 15; \ \alpha(N)=0.0012 \ 4 \ DCO=1.35 \ 19 \ POI = -0.13 \ 4$
457.4 6	8.5 15	2922.6	(23/2 ⁺)	2465.20	(21/2 ⁺)	M1+E2	0.09 6	$\alpha(K)=0.075; \alpha(L)=0.0156;$ $\alpha(M)=0.003613; \alpha(N)=0.00094$ DCO=1.64
457.9 [‡] 5	0.84 [‡] 10	2164.0+y	J+12	1706.1+y	J+10			
495 [‡] 1	0.33 [‡] 8	2659.0+v	J+14	2164.0+v	J+12			
734.7 6	6.7 13	1621.83	17/2+	886.70	13/2+	(E2)	0.01301	$\alpha(K)=0.00993 \ 14; \ \alpha(L)=0.00234 \ 4; \ \alpha(M)=0.000568 \ 8; \ \alpha(N)=0.0001450 \ 21$
813.6 3	5.7 10	2043.59	19/2+	1230.39	15/2+	(E2)	0.01054	$\alpha(\mathbf{M}) = 0.0001436 21$ $\alpha(\mathbf{M}) = 0.00817 12; \alpha(\mathbf{L}) = 0.00180 3;$ $\alpha(\mathbf{M}) = 0.000436 7;$ $\alpha(\mathbf{M}) = 0.0001112 16$
843.6 4	4.4 13	2465.20	(21/2 ⁺)	1621.83	17/2+	(E2)	0.00980	$\alpha(K) = 0.00763 \ 11; \ \alpha(L) = 0.001648$ 24; $\alpha(M) = 0.000398 \ 6; \ \alpha(N) = 0.0001015 \ 15$
886.7 1	100 6	886.70	13/2+	0.0	(9/2 ⁻)	M2	0.0648	$\alpha(K) = 0.0518 \ 8; \ \alpha(L) = 0.00991 \ 14;$ $\alpha(M) = 0.00236 \ 4; \ \alpha(N) = 0.000606$
								DCO=0.61 7 POL=-0.08 3.

Continued on next page (footnotes at end of table)

¹⁸¹Ta(²⁰Ne,6nγ) **2012Pa18,1996Cl01** (continued)

$\gamma(^{195}\text{Bi})$ (continued)

[†] From 2012Pa18, except as noted.

 \ddagger From 1996Cl01, relative transition intensity within the band.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁹⁵₈₃Bi₁₁₂

¹⁸¹Ta(²⁰Ne,6nγ) 2012Pa18,1996Cl01

