Adopted Levels

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen and Balraj Singh	NDS 177, 1 (2021)	3-Sep-2021

 $Q(\beta^{-})=5180 SY; S(n)=5100 SY; S(p)=8360 SY; Q(\alpha)=-970 SY$ 2021Wa16

Estimated uncertainties (2021Wa16): 200 for Q(β^-) and S(n), 280 for S(p) and Q(α).

S(2n)=11810 210, S(2p)=18740 450 (syst, 2021Wa16).

Other measurements:

1999Be63: ¹⁹⁴Re identified in fragmentation of ¹⁹⁷Au beam in ⁹Be(¹⁹⁷Au,X) reaction at 950 MeV/nucleon.

2009St16 (also 2008StZY thesis), 2009Ku28, 2009Al30, 2008St20: ¹⁹⁴Re nuclide produced in the reaction ⁹Be(²⁰⁸Pb,X) with a beam energy of 1 GeV/nucleon produced by the SIS-18 accelerator at GSI facility. Fragments identified in flight by the Fragment Separator (FRS) based on time of flight, $B\rho$ and energy loss.

2005Ca02, 2000PoZY: ${}^{9}Be({}^{208}Pb,X) E=1 \text{ GeV/nucleon A possible isomer with half-life <75 } \mu s assigned to {}^{194}Re, energy of the isomer is not known.$

- 2012Al05 (also 2012Be38): ¹⁹⁴Re produced by fragmentation of E=1 GeV/nucleon ²⁰⁸Pb beam from SIS-18 synchrotron at GSI on a ⁹Be target of thickness $\approx 2 \text{ g/cm}^2$. Reaction products were separated and identified by GSI Fragment Separator (FRS) set on ¹⁹⁰Ta, ¹⁹²Ta and ¹⁹⁴Re. The recoils were stopped in RISING active stopper. Measured E γ , I γ , $\gamma\gamma$ coin, (recoil) γ , $\beta\gamma$ and (recoil) β correlations, half-lives using RISING array of 15 seven-element Cluster Ge detectors for γ rays and DSSSD, MUSIC detectors for particle detection. Recoil-decay tagging technique also used. Deduced isomers and levels in ¹⁹⁴Os. Comparison and interpretation with Nilsson model multi-quasiparticle calculations for two quasiparticle states in ¹⁹⁴Re. 2012Al05 refer to a "to be published" study: GSI Storage Ring mass measurements reveal two long-lived isomers in ¹⁹⁴Re with excitation energies less than 1 MeV and with half-lives in seconds region (reference #40).
- 2012Re19 (also 2012ReZZ thesis): Schottky mass spectrometry technique used to measure masses directly and identify high-spin isomers. E=478-492 MeV/nucleon from UNILAC-SIS facility at GSI. Target=⁹Be 1035 mg/cm² with a 221 mg/cm² niobium backing. Mostly bare atoms of the highly-charged reaction products were separated with FRS and injected into storage ring ESR. The ions were stochastically and electron cooled. Deduced masses from Schottky spectra; identified high-spin isomer. ¹⁹⁴Re in 75⁺ charge state, i.e. bare ion.

Additional information 1.

¹⁹⁴Re Levels

Cross Reference (XREF) Flags

 9 Be(208 Pb,X γ)

Α

E(level)	J^{π}	T _{1/2}	XREF	Comments	
0‡	(0+,1)	5 [†] s <i>1</i>		 %β⁻=100 The β⁻ decay is the only decay mode observed. T_{1/2}: from decay curve for 478γ (2012Al05, previous value of 7.6 s 23 in 2009ReZW); 6 s <i>I</i> is also mentioned in authors' text, as also referred in 2014Mo15. Other: 1.0 s 5, deduced from position-time correlations between the implanted fragments and the subsequent β-decay in 2009Ku28, but half-life retracted by authors in their later analysis in 2014Ku23. Approximate number of nuclei implanted in the plastic stopper reported to be 101200 <i>300</i> (2009St16,2008StZY). J^π: from Nilsson multi-quasiparticle (MQP) calculations, 2012Al05 proposed low-lying oblate state of 0⁺, 1⁻ and 1⁺ with configurations: ν1/2[660]↑⊗π1/2[411]↓ at 64 keV, ν1/2[660]↑⊗π1/2[550]↑ at 0, and ν1/2[660]↑⊗π3/2[402]↓ at 174 keV, respectively, which by β⁻ decay possibly populates 0⁺ g.s. and excited 0⁺ at 696.5 keV in ¹⁹⁴Os. 	
285 [‡] 40	(11 ⁻)	25 [†] s 8		$\%\beta^{-}\approx100$ J ^{π} : from Nilsson multi-quasiparticle (MQP) calculations, 2012Al05 proposed this level as a low-lying prolate state with configuration of $\nu 13/2[606]\uparrow \otimes \pi 9/2[514]\uparrow$, which by β^{-} decay populates possible high-spin (≈10 -11) cascade $554\gamma \rightarrow 349\gamma \rightarrow 194\gamma$ in ¹⁹⁴ Os. Note that theoretical energy for this prolate state is calculated at 46 keV, in disagreement with the	

Continued on next page (footnotes at end of table)

Adopted Levels (continued)

¹⁹⁴Re Levels (continued)

E(level)	T _{1/2}	XREF	Comments
			measured energy of 285 keV in 2012Re19. T _{1/2} : decay spectra for 194 γ , 349 γ , 554 γ give T _{1/2} =32 s 8, 25 s 8, 25 s 8, respectively.
833 [‡] <i>33</i>	100 [†] s <i>10</i>		$\%\beta^- \approx 100$
			This isomer possibly feeds the 6 ⁺ state in ¹⁹⁴ Os. Decay spectra for 218 γ , 383 γ , 530 γ give T _{1/2} =40 s 8, 46 s 8, 100 s 10, respectively.
Х	45 µs 18	Α	%IT≈100
			E(level), $T_{1/2}$: isomer identified by 2005Ca02 and 2011St21 in ${}^{9}Be({}^{208}Pb,X\gamma) E=1$ GeV/nucleon. Half-life is from 2011St21. Other: 1-75 μ s (2005Ca02). It is possible that there are two different isomers, the one reported by 2005Ca02 with $T_{1/2}=1-75 \ \mu$ s decaying by γ rays of 128, 148 and 464 keV in a delayed γ -ray spectrum; and the second by 2011St21 decaying by only the 86.3-keV γ ray. As the two half-lives overlap within the uncertainties, evaluators assume only one isomer.

[†] From 2012Al05 (also 2012Re19) for highly ionized or bare atom. It is not possible to associate the isomers with specific half-lives.

[‡] From mass measurements by 2012Re19. In 2012Al05 as well as in 2012Re19 it was not possible to associate the isomers with specific half-lives, meaning that these could be interchanged.