¹⁹⁴Pt(pol p,p') **1991Se04,1990Se13**

History				
Type	Author	Citation	Literature Cutoff Date	
Full Evaluation	Jun Chen and Balraj Singh	NDS 177, 1 (2021)	3-Sep-2021	

1991Se04: E=647 MeV polarized protons were produced from the Clinton P. Anderson Meson Facility at LANL. Target was 99.2% enriched 194 Pt. Reaction products were momentum-analyzed with the High Resolution Spectrometer (HRS) (FWHM=50-65 keV) and detected with plastic scintillators. Measured scattered protons, analyzing powers at θ =3° to 21° in steps of 2°. Deduced deformation parameters, B(E2), and E4 transition matrix elements. Comparisons with Coupled-channel calculations.

1990Se13: E=135 MeV polarized protons were produced from the Indiana University Cyclotron Facility (IUCF). Target was 97.4% enriched 194 Pt. Reaction products were momentum-analyzed with a QDDM spectrometer (FWHM=60-80 keV) and detected with two scintillators. Measured scattered protons, analyzing powers at θ =10° to 60° in 1.5° steps. Deduced deformation parameters, E2 and E4 transition matrix elements. Comparisons with Coupled-channel calculations.

¹⁹⁴Pt Levels

E(level)	$J^{\pi \dagger}$	Comments		
0.0	0+			
329	2+	β_2 =-0.161 2, B(E2)=1.84 5 from B(E2)=0.368 9 (1991Se04). β_2 =-0.110 7 (1990Se13).		
622	2+	$B(E2)=0.010\ 2\ \text{from}\ B(E2)\downarrow=0.0020\ 4\ (1991Se04).$		
811	4+	β_4 =-0.044 2, B(E4)=0.037 4 from M(E4)=-1914 e fm ⁴ 92 (1991Se04). B(E4)=0.038 3 from M(E4)=-1953 e fm ⁴ 67 (1990Se13), recalculated by 1991Se04.		
1229	4+	β_4 =-0.030 <i>I</i> , B(E4)=0.0171 <i>I4</i> from M(E4)=1307 e fm ⁴ 55 (1991Se04). B(E4)=0.0131 <i>I5</i> from M(E4)=1145 e fm ⁴ 67 (1990Se13), recalculated by 1991Se04.		
1911	4+	β_4 =-0.064 2, B(E4)=0.078 6 from M(E4)=2799 e fm ⁴ 100 (1991Se04). B(E4)=0.052 3 from M(E4)=2290 e fm ⁴ 67 (1990Se13), recalculated by 1991Se04.		

[†] As given in 1991Se04.