¹⁹³Ir(³He,d) 1982Bl17

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Jun Chen and Balraj Singh	NDS 177, 1 (2021)	3-Sep-2021	

$J^{\pi}(^{193}$ Ir g.s.)=3/2⁺.

1982B117: E=40 MeV ³He beam was produced from the KVI cyclotron. Target was 140 μ g/cm² 99.45% enriched ¹⁹³Ir on a 40 μ g/cm² carbon backing. Reaction products were momentum-analyzed with the QMG/2 magnetic spectrograph (FWHM=25-30 keV) and detected with a plastic scintillator. Measured $\sigma(\theta)$ at angles which give maximum sensitivity for L=2 and L=0 transfer components. Deduced levels, J, π , L-transfers, spectroscopic factors from DWBA analysis. Comparison of experimental single-particle transfer strengths to the predicted values from IBA model. Uncertainty in absolute cross sections is 10%. Also includes 193 Ir(α ,t) reaction at 27 MeV (1981Ve02).

Others:

1981Be20: E=36 MeV ³He beam was produced from the Orsay tandem. Reaction products were momentum-analyzed with a split-pole magnetic spectrograph (FWHM=20 keV). Measured σ at 10°, 17° and 38° (lab). Ten levels identified. Cross sections for 17° (lab).

1981Ve02: E=36 MeV and 25.5 MeV from the Orsay tandem. Data at 50° (lab). Six levels identified. DWBA calculations.

Experimental cross sections compared with selection rules predicted by IBA model. The authors also report data for first four levels from ¹⁹³Ir(α ,t) reaction at E=27 MeV and θ =60° (lab).

All data are from 1982B117, unless otherwise noted.

194Pt Levels

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.02,0.03 0.03,0.10 0.20,0.39

[†] $((2J_f+1)/(2J_i+1))C^2S$ values, where $J_f=J(\text{level in residual nucleus})$ and $J_i=J(\text{target nucleus})$. Uncertainty=20%. For L=2 transfer, only the $d_3/2$ orbit is considered. The absence of 4^+ states in this reaction indicates that the contribution from $d_5/2$ orbit is probably not significant.

[‡] 0.40 (1981Be20).

0.18 (1981Be20).

[@] Unresolved doublet. Part of known 1432 level may also be present.

[&] 1.74 for L=6, i13/2; 0.20 for L=5, h11/2 and 0.16 for h9/2. ^{*a*} Level seen in ¹⁹³Ir(α ,t) also (1981Ve02).