Adopted Levels, Gammas

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Jun Chen and Balraj Singh	NDS 177, 1 (2021)	3-Sep-2021					

 $Q(\beta^{-})=-10288\ 27;\ S(n)=10751\ 19;\ S(p)=2409\ 15;\ Q(\alpha)=6987\ 3$ 2021Wa16

S(2n)=19081 17, S(2p)=3031 14, Q(\varepsilon)=5018 14, Q(\varepsilonp)=3936 17 (2021Wa16).

Isotope produced in heavy-ion reactions and identified by mass separation: 1967Si09, 1977De32, 1981Le23, 1984YaZY, 1985Va03, 1993Wa04.

Mass measurement by Schottky spectrometry: 2002No01, 1998GeZY.

2011Co01 (also 2012Co24): ¹⁹⁴Po produced in spallation reaction using UC_x target and 1.4 GeV proton beam at CERN-ISOLDE facility. Resonant ionization laser spectroscopy. Measured isotope shifts and deduced rms nuclear charge radius relative to that of 210 Po.

Additional information 1.

Theoretical references: consult the NSR database (www.nndc.bnl.gov/nsr/) for 91 primary references dealing with nuclear structure, and half-lives in different decay modes.

¹⁹⁴Po Levels

Cross Reference (XREF) Flags

Α	¹⁹⁴ Po	IT	decay	(12.9	μs)
---	-------------------	----	-------	-------	-----

- **B** ¹⁹⁸Rn α decay (65 ms)
- C 170 Yb(28 Si,4n γ)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments			
0.0@	0+	0.392 s 4	ABC	%α=93 7; %ε+%β ⁺ =7 7 T _{1/2} : from 1993Wa04. Other values: 0.34 s +11-7 (2014Ka23), 0.20 s +96-9 (2005Uu02), 0.37 s 4 (1999He32,2001Ju09), 0.42 s +8-6 (1996En02), 0.41 s 3 (1981Le23), 0.70 s 10 (1977De32), 0.6 s 2 (1967Si09). %α=93 7 for ¹⁹⁴ Po decay was obtained by M. Leino, Ph.D. Thesis (1983), as quoted in reference 19 of 1993Wa04. Other: %α>88%, estimated by 2014Ka23 from their α data. Theoretical T _{1/2} (β decay)=11.4 s and T _{1/2} (α)=0.69 ms (2019Mo01) suggests negligible β decay. <r<sup>2>^{1/2}=5.517 fm 18 (2013An02 evaluation). Δ<r<sup>2>(¹⁹⁴Po,²¹⁰Po)=-0.462 fm² 16 (2013An02 evaluation). Other: Δ<r<sup>2>(¹⁹⁴Po,²¹⁰Po)=-0.596 fm² 10(stat)20(syst) (2011Co01, collinear laser spectroscopy). Measured δν(¹⁹⁴Po,²¹⁰Po)=+7.36 GHz 16 (2011Co01). 2013An03 estimated upper limits for the total kinetic energy release in the fission</r<sup></r<sup></r<sup>			
319.31 [@] 10	2+	26 [#] ps 5	ABC	of ¹⁹⁴ Po, being the $\beta + \varepsilon$ daughter product of ¹⁹⁴ At. J^{π} : 319.3 γ E2, ΔJ =2 to 0 ⁺ .			
685.46 [@] 14	4+	9.7 [#] ps 28	A C	$Q_t = 5.5 \ \theta, \beta_2 = 0.18 \ 2 \ \text{from} (-31,417) \ (2008 \text{Gr04}).$ $J^{\pi}: 366.1\gamma \ \Delta J = 2, \text{ E2 to } 2^+; \text{ member of g.s. band.}$ $Q_t = 5.4 \ \theta, \ \theta^t = 0.17 \ 3 \ \text{from} \ (^{28}\text{Si} \ 4n\gamma) \ (2008 \text{Gr04})$			
757.67 ^{&} 12	(2^{+})		AC	J^{π} : 757.7 $\gamma \Delta J$ =(2), (E2) to 0 ⁺ .			
1147.19 [@] 24	6+		AC	J^{π} : 461.7 $\gamma \Delta J=2$, (E2) to 4 ⁺ ; member of g.s. band.			
1210.38 ^{&} 17	(4^{+})		AC	J^{π} : 453.9 $\gamma \Delta J=2$, (E2) to (2 ⁺); band assignment.			
1644.39 ^{&} 23	(6+)		A C	J^{π} : 434.1 γ to (4 ⁺); band assignment.			
1692.2 [@] 3	8+		AC	J^{π} : 545.0 $\gamma \Delta J=2$ to 6 ⁺ ; member of g.s. band.			
1984.7 ^{<i>a</i>} 5	(7^{-})		A C	J ^π : proposed by 1999He32 in (²⁸ Si,4nγ); 340.5γ ΔJ=(1) to (6 ⁺).			
2065.6 <i>3</i> 2281.7 ^{<i>a</i>} 6	(8 ⁺) (9 ⁻)		A C A C	J ^π : proposed by 1999He32 in (²⁸ Si,4nγ); 373.1γ to 8 ⁺ , 918.5γ to 6 ⁺ . J ^π : 297.3γ ΔJ=2, (E2) to (7 ⁻).			

Adopted Levels, Gammas (continued)

¹⁹⁴Po Levels (continued)

E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments
2294.0 [@] 4	10+		С	J^{π} : 601.8 $\gamma \Delta J$ =2, (E2) to 8 ⁺ ; member of g.s. band.
2313.6 3	(10 ⁻)	12.9 μs 5	A	%1T=100 Possible configuration: $\pi h_{9/2} \otimes i_{3/2}$ (2016An10). J^{π} : 248.0 γ (M2) to (8 ⁺).
				T _{1/2} : from ER- γ - α correlations by gating with "OR" condition on 319, 366, 373 and 545 keV γ transitions (2016An10). Other: 15 μ s 2 (1999He32,2001Ju09, (recoil)(458.6) γ (t), but 458 γ is not placed by 2016An10).
2623.2 [@] 5	12+		С	J^{π} : 392.3 $\gamma \Delta J=2$, (E2) to 10 ⁺ ; member of g.s. band.
2653.8? ^a 8	(10)		С	J^{π} : 371.9 $\gamma \Delta J=(1)$ to (9 ⁻).
2915.3 [@] 6	(14^{+})		С	J^{π} : 292.1 γ to 12 ⁺ ; member of g.s. band.
3325.3? [@] 8	(16 ⁺)		С	J^{π} : 409.9 γ to (14 ⁺); possible member of g.s. band.

 † From a least-squares fit to $E\gamma$ values.

[‡] As proposed by 1999He32 based on $\gamma(\theta)$ data and systematics of heavier Po nuclides.

[#] From recoil-decay tagging technique in recoil-distance Doppler-shift (RDDS) measurements in 170 Yb(28 Si,4n γ) dataset, with analysis by differential-decay curve method (DDCM) using 114 Cd(83 Kr,3n γ) reaction (2006Gr16,2008Gr04).

[@] Band(A): g.s. band.

[&] Band(B): Band based on (2^+) .

^{*a*} Seq.(C): Sequence based on (7^{-}) .

$\gamma(^{194}\text{Po})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α [@]	Comments
319.31	2^{+}	319.3 <i>1</i>	100	0.0	0^{+}	E2	0.1048	B(E2)(W.u.)=89 +21-14
685.46	4+	366.1 <i>1</i>	100	319.31	2+	E2	0.0712	E _{γ} : other: 319.7 <i>3</i> from (²⁸ Si,4n γ). B(E2)(W.u.)=124 +50-28
757.67	(2 ⁺)	438.4 1	100 14	319.31	2+	[M1+E2]	0.11 7	E _{γ} : other: 366.5 <i>3</i> from (²⁸ Si,4n γ). E _{γ} ,I _{γ} : other: 438.1 <i>5</i> with I γ =100 <i>34</i> from (²⁸ Si 4n γ)
		757.7 2	71 14	0.0	0+	(E2)		E_{γ} : weighted average of 757.6 2 from ¹⁹⁴ Po IT decay and 758.1 5 from (²⁸ Si,4n γ).
								I_{γ} : other: 116 84 from (²⁸ Si,4n γ).
1147.19	6+	461.7 2	100	685.46	4+	(E2)	0.0390	E_{γ} : weighted average of 461.6 2 from ¹⁹⁴ Po IT decay and 461.8 3 from (²⁸ Si,4n γ).
1210.38	(4+)	453.9 [‡] 5	88 22	757.67	(2 ⁺)	(E2)	0.0408	I_{γ} : weighted average of 116 <i>34</i> from ¹⁹⁴ Po IT decay and 76 22 from (²⁸ Si 4ny)
		524.9 <i>1</i>	100 17	685.46	4+	[M1+E2]	0.07 5	$E_{\gamma,I_{\gamma}}$: other: 524.4 5 with $I_{\gamma}=100$ 24 from (²⁸ Si 4n _{\gamma})
1644.39	(6 ⁺)	434.1 2	100 13	1210.38	(4 ⁺)	[E2]	0.0455	$(25, 4n\gamma)$ E _{γ} , I _{γ} : other: 433.9 5 with I γ =100 25 from $(^{28}$ Si 4n $\gamma)$
		958.7 4	39 6	685.46	4+			E_{γ} : other: 958.7 5 from (²⁸ Si,4n γ). I_{γ} : weighted average of 38.8 63 from ¹⁹⁴ Po IT decay and 37 14 from (²⁸ Si,4n γ).
1692.2	8+	545.0 <i>1</i>	100	1147.19	6+	(E2)	0.0262	E_{γ} : other: 545.2 3 from (²⁸ Si.4n γ).
1984.7	(7-)	340.5 4	100	1644.39	(6 ⁺)	(E1)	0.0235	E _γ : weighted average of 340.1 <i>3</i> from ¹⁹⁴ Po IT decay and 340.8 <i>3</i> from (²⁸ Si,4nγ). Mult.: ΔJ =(1), dipole from $\gamma(\theta)$ in (²⁸ Si,4nγ); (E1) from level scheme
2065.6	(8+)	373.3 1	100 5	1692.2	8+	[M1+E2]	0.17 11	E_{γ} : other: 373.1 5 from (²⁸ Si,4n γ).

Continued on next page (footnotes at end of table)

				Адор	ted Lev	eis, Gamn	las (contin	ued)	
$\gamma(^{194}\text{Po})$ (continued)									
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α [@]	$I_{(\gamma+ce)}$	Comments
2065.6	(8+)	(421)	≤5.9	1644.39	(6+)				
2281.7	(9 ⁻)	918.5 2 297.3 5	39.0 25 100	1147.19 1984.7	6 ⁺ (7 ⁻)	(E2)	0.1301		E_{γ} : other: 918.3.5 from (²⁸ S1,4n γ). E_{γ} : unweighted average of 296.8.2 in IT decay and 297.3.3 in (²⁸ S1,4n γ).
2294.0 2313.6	10 ⁺ (10 ⁻)	601.8 [‡] <i>3</i> (33)	100	1692.2 2281.7	8 ⁺ (9 ⁻)	(E2)	0.0210	180	E _γ : unobserved γ-ray but 2016An10 indicate that the 33γ could populate the 2281 level as the weak 296.8 γ decay of the 2281 level was observed in the delayed γ ray spectroscopic data indicating population of the 2281 by an isomeric state.
		248.0 <i>1</i>	100 6	2065.6	(8 ⁺)	(M2)	3.50		B(M2)(W.u.)=0.0120 +5-6 Mult.: From α (K)exp \leq 2.3 4. Value was considered as an upper limit as additional sources of Po K x-rays from significant E0 components as well as unobserved highly converted transitions cannot be ruled out. However, 2016An10 have strongly suggested M2 transition based on their observation of the Po K x-rays intensities in coincidence with other transitions as well as the intensity balance from $\gamma\gamma$ coincidence at the 8 ⁺ level, with intensity of the 248 γ calculated for several other possible multipolarities.
		(622)	≤12	1692.2	8+	[M2]	0.191		$B(M2)(W.u.) < 1.6 \times 10^{-5}$
2623.2	12^{+}	329.2 [‡] 3	100	2294.0	10^{+}	(E2)	0.0960		
2653.8?	(10)	371.9 ⁴ 5	100	2281.7	(9 ⁻)	(D)	0.15 13		
2915.3	(14^+)	292.1 + 3	100	2623.2	12+	[E2]	0.1365		
3325.3?	(16^{+})	409.9 <mark>+∝</mark> 5	100	2915.3	(14^{+})	[E2]	0.0528		

6.4 stad I (007 . 4:**d**)

[†] From ¹⁹⁴Po IT decay (2016An10), unless otherwise noted. [‡] From ¹⁷⁰Yb(²⁸Si,4n γ) (1999He32).

[#] Assigned by evaluators based on $\gamma(\theta)$ data in (²⁸Si,4n γ) (1999He32), and RUL (for E2 and M2 transitions) for gamma rays from levels of known half-lives, and assuming half-lives of no longer than 20 or so nanoseconds for other levels (for in-band transitions). Exceptions are noted.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

¹⁹⁴₈₄Po₁₁₀