¹⁷⁰Yb(²⁸Si,4nγ) **1999He32,1995Yo02,2006Gr16**

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Jun Chen and Balraj Singh	NDS 177, 1 (2021)	3-Sep-2021						

Includes ¹⁷¹Yb(²⁸Si,5ny) from 1999He32, and ¹¹⁴Cd(⁸³Kr,3ny) from 2006Gr16, 2008Gr04.

1999He32 (also 2002Ju12, 2001Ju09,1997Ju03): E=143 MeV for ¹⁷⁰Yb target and 155 MeV for ¹⁷¹Yb target. Measured E γ , $\gamma\gamma$ -coin, I γ , $\gamma(\theta)$ using DORIS array of nine TESSA type detectors, the Jurosphere array of ten TESSA type detectors and 13 Eurogam phase I type detectors, and RITU gas-filled recoil separator. Recoil-decay tagging (RDT) technique used by detecting α particles from the decay of ¹⁹⁴Po.

1995Y002: ¹⁷⁰Yb(²⁸Si,4n γ) E=142 MeV. Measured E γ , (recoil) γ -coin, and $\gamma\gamma$ -coin using a fragment mass analyzer and an array of ten Compton suppressed Ge detectors. Ground-state band up to 10⁺, and three other levels were proposed in this study.

2006Gr16, 2008Gr04: E=375 MeV. Measured E γ , $\gamma\gamma$ -coin, $\alpha\gamma$ coin, lifetimes. Gamma rays detected using 15 JUROGAM Ge detectors. Recoil decay tagging (RDT) used to tag γ -ray spectra with ¹⁹⁴Po α decay. Average lifetimes extracted from decay curves measured by detector rings at 158° and 134°. The separated recoils were detected at the RITU (gas-filled separator) focal plane by the GREAT particle spectrometer. The results are the same in 2006Gr16 and 2008Gr04, but the details of the measurements are given by 2008Gr04.

Qt=transition quadrupole moment deduced from lifetime data (2008Gr04).

The level scheme and $\gamma(\theta)$ data are from 1999He32.

¹⁹⁴Po Levels

E(level)	$J^{\pi \dagger}$	T _{1/2} ‡	Comments
0.0 [#]	0^{+}		
319.8 [#] 3	2+	26 ps 5	$Q_t = 5.5 \ 6, \ \beta_2^t = 0.18 \ 2 \ (2008 Gr 04).$
686.5 [#] 4	4+	9.7 ps 28	$Q_t = 5.4 \ 8, \ \beta_2^{\tilde{t}} = 0.17 \ 3 \ (2008 \text{Gr} 04).$
757.8 [@] 4	2^{+}		
1148.3 [#] 5	6+		
1211.3 [@] 5	4+		
1645.2 [@] 6	6+		
1693.5 [#] 6	8+		
1986.0 ^{&} 6	7-		
2066.6 7	(8^{+})		
2283.7 ^{X} 7	9-		
2295.3 [#] 7	10^{+}		
2525.2? 8	(11 ⁻)	15 μs 2	E(level): this tentative level is not confirmed in the delayed- γ study by 2016An10 from an isomer in ¹⁹⁴ Po. Instead a 12.9- μ s isomer is assigned by 2016An10 to a 2313 level decaying by a 248 γ . The 2525 level is not included in the Adopted dataset, and the 15 μ s is considered the same as the 12.9- μ s isomer. T _{1/2} : from (recoil) γ (t) (1999He32).
2624.5 [#] 7	12^{+}		J^{π} : 11 ⁻ assigned by 1995Yo02.
2655.6? <mark>&</mark> 9	(10)		
2916.6 [#] 8	(14^{+})		
3326.5? [#] 9	(16 ⁺)		

[†] As proposed by 1999He32 based on $\gamma(\theta)$ data and systematics of heavier Po nuclides. When considered in Adopted Levels, assignments are placed inside parentheses if there is no other supporting evidence.

[‡] From recoil-decay tagging technique in recoil-distance Doppler-shift (RDDS) measurements. Analysis by differential-decay curve method (DDCM) (2006Gr16,2008Gr04).

Band(A): g.s. band.

[@] Band(B): Band based on 2⁺.

[&] Seq.(C): γ sequence based on 7⁻.

¹⁷⁰Yb(²⁸Si,4nγ) **1999He32,1995Yo02,2006Gr16** (continued)

$\gamma(^{194}{\rm Po})$

For stretched quadrupole transitions, $I(143^{\circ})/I(90^{\circ})=1.20 \ 8 \ (1999He32)$.

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	Comments
292.1 3	5.1 7	2916.6	(14^{+})	2624.5	12+		
297.7 3	5.69	2283.7	9-	1986.0	7-	(E2)	Mult.: $I(143^{\circ})/I(90^{\circ})=1.5 4$ gives $\Delta J=2$.
319.7 <i>3</i>	100 8	319.8	2+	0.0	0^{+}	E2	$B(E2)(W.u.) = 90\ 20\ (2008Gr04)$
							Mult.: $I(143^{\circ})/I(90^{\circ})=1.22$ 5.
							E_{γ} : other: 318.6 2 (1995Yo02).
329.2 <i>3</i>	7.3 10	2624.5	12^{+}	2295.3	10^{+}	(E2)	E_{γ} : other: 329.2 3 (1995Yo02).
							Mult.: $I(143^{\circ})/I(90^{\circ})=1.3 \ 3 \text{ gives } \Delta J=2.$
340.8 <i>3</i>	7.5 12	1986.0	7-	1645.2	6+	(D)	E_{γ} : other: 340.3 3 (1995Yo02) placed from a 659 level to
							320 level.
1050 0 5	()						Mult.: $I(143^{\circ})/I(90^{\circ}) = 0.92$ 13.
*359.2.5	62	(96 5	4+	210.9	2+	E2	$I(143^{\circ})/I(90^{\circ})=0.72.$
500.5 5	00 /	080.5	4	519.8	2	EZ	D(E2)(W.U.) = 120.40 (2008O104) E : other: 265.7.2 (1005Va02)
							E_{γ} . outer: 303.7.2 (19931002). Mult : $I(1/3^{\circ})/I(00^{\circ}) = 1.24.7$
271.0^{6} 5	206	2655 69	(10)	2292.7	0-	(D)	Mult.: $I(143)/I(90) = 1.247$.
3/1.9 5	2.8 0	2055.0?	(10)	2283.7	9	(D)	Mult.: $I(145^{\circ})/I(90^{\circ})=0.93$.
3/3.1+ 5		2066.6	(8+)	1693.5	8+		
409.9 [@] 5	1.4 5	3326.5?	(16^{+})	2916.6	(14^{+})		
433.9 5	4.9 12	1645.2	6+	1211.3	4+		$I(143^{\circ})/I(90^{\circ})=1.2$ 6.
438.1 5	62	757.8	2+	319.8	2+		$I(143^{\circ})/I(90^{\circ})=1.02.$
453.9 5	3.9 11	1211.3	4+	757.8	2+	(E2)	Mult.: $I(143^{\circ})/I(90^{\circ})=1.09 \ 10 \text{ gives } \Delta J=2.$
458.6 ^{‡@} 5		2525.2?	(11^{-})	2066.6	(8^{+})	[E3]	
461.8 <i>3</i>	43 5	1148.3	6+	686.5	4^{+}	(E2)	E_{γ} : other: 461.0 3 (1995Yo02).
							Mult.: $I(143^{\circ})/I(90^{\circ})=1.30 \ 10 \text{ gives } \Delta J=2.$
524.4 5	5.1 12	1211.3	4+	686.5	4+		E_{γ} : other: 525.1 4 (1995Yo02).
			o.+		<pre></pre>		$I(143^{\circ})/I(90^{\circ})=0.8 \ 3.$
545.2 3	29 3	1693.5	8-	1148.3	6-	(E2)	E_{γ} : other: 544.6 3 (1995 Yo02).
(01.0.2	17.0	2205.2	10+	1(02.5	0+	$(\mathbf{E}2)$	Mult.: $I(143^{\circ})/I(90^{\circ})=1.18$ 11 gives $\Delta J=2$.
601.8 3	1/2	2295.3	10.	1693.5	8	(E2)	E_{γ} : other: 600.7 4 (1995 Y002).
759 1 5	75	757 0	2+	0.0	0+	(E2)	Mult.: $I(143)/I(90) = 1.5.5$ gives $\Delta J = 2$.
x802.7.5	21	131.0	2	0.0	0	(E2)	$I(143^{\circ})/I(90^{\circ}) = 0.9 \Delta$
0.12.75	<u> </u>	2066.6	(0+)	1140 2	6 +		1(115)/1(50) = 0.57
918.3 ⁺ 3	107	2000.0	(8·) 6+	1148.3	0' 4+		
930.13	1.0 /	1043.2	0	080.5	4		

[†] From 1999He32. Corresponding values from 1995Yo02 are in agreement, but generally seem to be lower by up to 1 keV.

[‡] γ identified in recoil-decay tagging (RDT) method for delayed γ rays observed in the RITU focal plane, tentatively assigned to the decay of an isomer.

[#] Assigned by evaluators based on $\gamma(\theta)$ data in 1999He32, and RUL (for E2 and M2) for γ rays from levels of known half-life, and assuming half-lives of no longer than few ns for other levels for in-band transitions.

[@] Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

¹⁹⁴₈₄Po₁₁₀