¹⁹⁴Bi ε decay (95 s) 1987Va09,1991Va04 | History | | | | | | | | |-----------------|---------------------------|-------------------|------------------------|--|--|--|--| | Type | Author | Citation | Literature Cutoff Date | | | | | | Full Evaluation | Jun Chen and Balraj Singh | NDS 177, 1 (2021) | 3-Sep-2021 | | | | | Parent: ¹⁹⁴Bi: E=0.0; J^{π}=(3⁺); T_{1/2}=95 s 3; Q(ε)=8185 18; % ε +% β ⁺ decay=99.54 25 Others: 1993St01, 1991Va04, 1984Va11, 1984Va19. ### ¹⁹⁴Pb Levels | E(level) [†] | $J^{\pi \ddagger}$ | |-----------------------|--------------------| | 0.0 | 0+ | | 930.69 22 | 0_{+} | | 965.09 <i>15</i> | 2+ | | 1308.26 <i>15</i> | (2^{+}) | | 1540.13 20 | 4+ | | 1636.89 25 | (≤4) | | 1738.76 20 | $(1,2^+)$ | | 2019.16 25 | (≤4) | $^{^{\}dagger}$ From least-squares fit to γ -ray energies. # $\gamma(^{194}\text{Pb})$ 1987Va09 present a composite decay scheme for the 194 Bi isomers. The evaluators have attempted to separate the decay schemes assuming that the three isomers populate levels with different range of spins, the 95-s g.s. populating the low-spin levels (J \leq 4) and the 115-s and 125-s isomers populating the high-spin (J>4). The low lying levels, however, are seen in the decay of all the activities The decay scheme has not been normalized since several γ rays remain unplaced and separation of γ rays between different isomers is not established. See ¹⁹⁴Bi ε decay (125 s+115 s) for unplaced transitions. | E_{γ}^{\dagger} | E_i (level) | \mathbf{J}_i^{π} | E_f | J_f^{π} | Mult.‡ | α@ | Comments | |---------------------------|---------------|----------------------|---------|-------------|------------|---------|--| | 231.9 2 | 1540.13 | 4+ | 1308.26 | (2+) | [E2] | 0.259 | $\alpha(K)$ =0.1192 17; $\alpha(L)$ =0.1046 16; $\alpha(M)$ =0.0272 4 $\alpha(N)$ =0.00687 10; $\alpha(O)$ =0.001248 18; $\alpha(P)$ =6.72×10 ⁻⁵ 10 | | 343.2 2
377.5 <i>3</i> | 1308.26 | (2 ⁺) | 965.09 | | (E0+M1+E2) | 0.72 11 | Mult.: $\alpha(K)\exp=0.6\ I$, $\alpha(L)\exp=0.09\ 2$. The uncertainties on $\alpha(K)\exp$ and $\alpha(L)\exp$ from 1987Va09 seem to be underestimated in view of 30% uncertainty on γ -ray intensity. α : $\alpha(K)\exp+1.33(\alpha(L)\exp)$. | ¹⁹⁴Bi-J^π,T_{1/2}: From Adopted Levels of ¹⁹⁴Bi. Adopted value is from $\alpha(t)$ in 1991Va04. Other: 106 s 3 in 1987Va09 was obtained from 1308 $\gamma(t)$ and 931 $\gamma(t)$, which are seen in the decay of all three ¹⁹⁴Bi activities. ¹⁹⁴Bi-Q(ε): From 2021Wa16. ¹⁹⁴Bi-%ε+%β⁺ decay: From Adopted Levels of ¹⁹⁴Bi, based on %α=0.46 25 (1991Va04). ¹⁹⁸⁷Va09: ¹⁹⁴Bi source ions were produced via ^{nat}Re(16 O,xn γ) with E<210 MeV beam with the Leuven Isotope Separator On-Line (LISOL) facility. γ rays were detected with two Ge detectors and conversion electrons were detected with a Si(Li) detector. Measured E γ , I γ , E(ce), I(ce), $\gamma\gamma$ -coin, ce- γ -coin, γ (t), $\gamma\gamma$ (t). Deduced levels, J, π , T_{1/2}, conversion coefficients, γ -ray multipolarities. Systematics of neighboring Pb isotopes and comparisons with theoretical calculations. See also 1984Va19 and 1984Va11 from the same research group. ¹⁹⁴Bi(95 s and 115 s) α activities from ²⁰²Fr α-decay chain, produced by $Ir(^{20}Ne,xn)$, $^{181}Ta(^{32}S,2p9n)$, $Re(^{20}Ne,xn)$ (1992Hu04), and directly by $^{181}Ta(^{20}Ne,xn)$, $^{182}W(^{20}Ne,pxn)$ (1991Va04), and $Re(^{16}O,xn)$ (1987Va09). [‡] From Adopted Levels. #### # γ (194Pb) (continued) | E_{γ}^{\dagger} | I_{γ} †# | E_i (level) | \mathbf{J}_i^{π} | \mathbf{E}_f | \mathbf{J}_f^{π} | Mult.‡ | α [@] | Comments | |------------------------|-----------------|---------------|----------------------|----------------|----------------------|--------|----------------|---| | 575.0 2 | | 1540.13 | 4+ | 965.09 | 2+ | E2 | 0.0212 | $\alpha(K)=0.01553\ 22;\ \alpha(L)=0.00427\ 6;$ | | | | | | | | | | $\alpha(M) = 0.001052 \ 15$ | | | | | | | | | | $\alpha(N)=0.000266 \ 4; \ \alpha(O)=5.07\times10^{-5} \ 8;$ | | | | | | | | | | $\alpha(P)=4.19\times10^{-6} 6$ | | 671.8 2 | 3.5 5 | 1636.89 | (≤4) | 965.09 | 2+ | | | Mult.: $\alpha(L)\exp=0.0037~8$. I _y : doublet. The other component assigned to the | | 0/1.6 2 | 3.3 3 | 1030.09 | (54) | 905.09 | 2 | | | decay of the 115 s +125 s isomers. Total I γ =5.6 | | | | | | | | | | 5 divided by 1987Va09, probably from $\gamma\gamma$ data. | | 710.9 2 | 1.0 5 | 2019.16 | (≤4) | 1308.26 | . , | | | | | 773.5 <i>3</i> | 2.0 10 | 1738.76 | $(1,2^+)$ | 965.09 | | | | | | 808.1 <i>3</i> | 0.4 3 | 1738.76 | $(1,2^+)$ | 930.69 | 0_{+} | | | | | 930.6 4 | | 930.69 | 0+ | 0.0 | 0+ | E0 | | $I(\gamma+ce)=0.9 2$, $ce(K)/ce(L)$ exp=4.95 34 (1990Tr01). | | 965.0 2 | | 965.09 | 2+ | 0.0 | 0_{+} | E2 | 0.00714 | $\alpha(K)=0.00567 \ 8; \ \alpha(L)=0.001121 \ 16;$ | | | | | | | | | | $\alpha(M)=0.000267 \ 4$ | | | | | | | | | | $\alpha(N)=6.77\times10^{-5}\ 10;\ \alpha(O)=1.322\times10^{-5}\ 19;$ | | | | | | | | | | $\alpha(P)=1.266\times10^{-6}\ 18$ | | | | | | | | | | Mult.: $\alpha(L) \exp = 0.0019 \ 4$. | | 1308.3 2 | | 1308.26 | (2^{+}) | 0.0 | 0_{+} | (E2) | 0.00400 | $\alpha(K)=0.00324$ 5; $\alpha(L)=0.000573$ 8; | | | | | | | | | | $\alpha(M) = 0.0001349 \ I9$ | | | | | | | | | | $\alpha(N)=3.42\times10^{-5}$ 5; $\alpha(O)=6.74\times10^{-6}$ 10; | | | | | | | | | | $\alpha(P)=6.78\times10^{-7}\ 10;\ \alpha(IPF)=1.693\times10^{-5}\ 24$ | | | | | | | | | | E_{γ} : 1987Va09 quote $\alpha(K)$ exp=0.0039 8; however, | | | | | | | | | | in the ce spectrum shown by the authors, the K-conversion line is not evident. | | 1738.9 <i>3</i> | 0.6 2 | 1738.76 | $(1,2^+)$ | 0.0 | 0^{+} | | | K-conversion time is not evident. | | 1/30.73 | 0.0 2 | 1/30.70 | (1,4) | 0.0 | U | | | | [†] From 1987Va09. [‡] From Adopted Gammas, supported by the ce data in 1987Va09 as given in comments where available, which are normalized to ce(K) lines of 965 γ , 575 γ and 421 γ , all treated as E2 transitions. [#] For total Iy from all isomers, see 194 Bi(115 s + 125 s). [®] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified. ### ¹⁹⁴Bi ε decay (95 s) 1987Va09,1991Va04