| ¹⁹³ Os(n, γ) E=thermal | 1978Ca16 | |---|----------| |---|----------| Type Author Citation Literature Cutoff Date Full Evaluation Jun Chen and Balraj Singh NDS 177, 1 (2021) 3-Sep-2021 1978Ca16: Thermal neutrons were produced from the ILL high-flux reactor. Successive neutron capture in 192 Os target. γ rays were detected with curved-crystal spectrometers. Measured E γ , I γ . Deduced levels. No data on primary transitions are available. ## ¹⁹⁴Os Levels E(level) $J^{\pi \dagger}$ 0.0 0^{+} 218.509 6 (2⁺) 656.540 9 (2⁺) ## γ (194Os) | E_{γ}^{\dagger} | $I_{\gamma}^{\ddagger \#}$ | $E_i(level)$ | \mathbf{J}_i^{π} | \mathbf{E}_f \mathbf{J}_f^{π} | Comments | |------------------------|----------------------------|--------------|----------------------|-------------------------------------|--| | 218.511 6 | 100 | 218.509 | (2^{+}) | 0.0 0+ | | | 438.034 8 | 29 <i>4</i> | 656.540 | (2^{+}) | 218.509 (2+) | I_{γ} : ΔI_{γ} from B(E2)(438 γ)/B(E2)(656 γ)=4.0 6 deduced by 1978Ca16. | | 656.526.16 | | | (2^{+}) | $0.0 0^{+}$ | • | $^{^{\}dagger}$ Measurement with a curved-crystal spectrometer. ΔE is statistical. The systematic uncertainty is not given by the authors. [†] From Adopted Levels. [‡] Relative photon intensity. Authors quote $I\gamma(218\gamma)=80\ 10$ per 100-neutron captures. [#] For intensity per 100 neutron captures, multiply by 0.80 10. ## ¹⁹³Os(n,γ) E=thermal **1978Ca16** ## Level Scheme Intensities: \$Per 100 neutron captures