¹⁹⁴Re β^- decay:mixed 2012Al05

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	Jun Chen and Balraj Singh	NDS 177, 1 (2021)	3-Sep-2021							

Parent: ¹⁹⁴Re: E=0; $J^{\pi}=(0^+,1)$; $T_{1/2}=5 \text{ s } I$; $Q(\beta^-)=5180 \text{ SY}$; $\%\beta^- \text{ decay}\approx 100.0$

Parent: ¹⁹⁴Re: E=285 40; J^{π}=(11⁻); T_{1/2}=25 s 8; Q(β ⁻)=5180 SY; % β ⁻ decay \approx 100.0

Parent: ¹⁹⁴Re: E=833 33; $T_{1/2}=100 \text{ s } 10$; $Q(\beta^{-})=5180 \text{ SY}$; $\%\beta^{-}$ decay ≈ 100.0

 194 Re(0)-Possible oblate state which feeds g.s. and first excited 0⁺ in 194 Os.

 194 Re(0)-E: From the Adopted Levels of $^{19\overline{4}}$ Re. 0+x from 2012Al05.

¹⁹⁴Re(0)-T_{1/2}: Measured by 2012Al05 using $\beta\gamma$ (implant) correlations. Other: 6 s *I* from (implant) β correlation. Decay spectrum for 478 γ gives T_{1/2}=5 s *I*.

¹⁹⁴Re(0)-Q(β^{-}): 5180 200 (syst, 2021Wa16).

¹⁹⁴Re(0)- $\%\beta^-$ decay: Assumed $\%\beta^- \approx 100$.

¹⁹⁴Re(285)-Possible prolate state feeding the high-spin sequence: 554-349-194 in ¹⁹⁴Os.

¹⁹⁴Re(285)-E: From Adopted Levels of ¹⁹⁴Re. 0+y from 2012Al05.

¹⁹⁴Re(285)-T_{1/2}: Measured by 2012Al05 using $\beta\gamma$ (implant) correlations. Decay spectra for 194 γ , 349 γ , 554 γ give T_{1/2}=32 s 8, 25 s 8, 25 s 8, 25 s 8, respectively.

¹⁹⁴Re(285)-Q(β^{-}): 5180 200 (syst,2021Wa16).

 194 Re(285)-% β^- decay: Assumed % $\beta^- \approx 100$.

 194 Re(833)-This isomer possibly feeds the 6⁺ state in 194 Os.

¹⁹⁴Re(833)-E: From Adopted Levels of ¹⁹⁴Re. 0+z from 2012Al05.

¹⁹⁴Re(833)-T_{1/2}: Measured by 2012Al05 using $\beta\gamma$ (implant) correlations. Decay spectra for 218 γ , 383 γ , 530 γ give T_{1/2}=40 s 8, 46 s 8, 100 s 10, respectively.

¹⁹⁴Re(833)-Q(β⁻): 5180 200 (syst,2021Wa16).

¹⁹⁴Re(833)- $\%\beta^-$ decay: Assumed $\%\beta^- \approx 100$.

2012Al05: ¹⁹⁴Re produced in fragmentation of 1 GeV/nucleon ²⁰⁸Pb beam from SIS-18 synchrotron at GSI on a ⁹Be target of thickness $\approx 2 \text{ g/cm}^2$. Reaction products were separated and identified by GSI Fragment Separator (FRS) set on ¹⁹⁰Ta, ¹⁹²Ta and ¹⁹⁴Re. The recoils were stopped in RISING active stopper. Measured E γ , I γ , $\gamma\gamma$ coin, (recoil) γ , $\beta\gamma$ and (recoil) β correlations, half-lives using RISING array of 15 seven-element Cluster Ge detectors for γ rays and DSSSD, MUSIC detectors for particle detection. Recoil-decay tagging technique also used. Deduced isomers and levels in ¹⁹⁴Os. Comparison with TRS and HF mean-field calculations.

2012A105 refer to several "to be published" studies: 1. GSI Storage Ring mass measurements reveal two long-lived isomers in ¹⁹⁴Re with excitation energies less than 1 MeV and with half-lives in seconds region (reference #40). 2. Details of the ¹⁹⁴Os level scheme from deep-inelastic scattering experiment (reference #41). 3. Details of ¹⁹⁴Os level scheme from ¹⁹⁴Re β^- decay (reference #44).

Note that in 2012Al05 as well as in 2012Re19, it was not possible to associate the isomers in ¹⁹⁴Re with specific half-lives, meaning that these could be interchanged.

¹⁹⁴Os Levels

E(level) [†]	\mathbf{J}^{π}	Comments
0.0	0^{+}	
218.2 3	$(2^+)^{\ddagger}$	
601.5 5	$(4^+)^{\ddagger}$	
696.0 <i>6</i>	$0^{+\ddagger}$	
1131.6 8	$(6^+)^{\ddagger}$	
x [@]	#	E(level): x is above 1131.6 level.
193.6+x [@] 6	#	
542.6+x [@] 7	#	
1096.5+x [@] 7	#	

¹⁹⁴Re β^- decay:mixed 2012Al05 (continued)

¹⁹⁴Os Levels (continued)

[†] Deduced from $E\gamma$ data.

[‡] From the Adopted Levels.

[#] Expected to be high-spin (J=10-12), if each level is fed directly in β^- decay of ¹⁹⁴Re, (11⁻).

^{*a*} Seq.(A): γ cascade.

							$\gamma(^{194}\text{Os})$	
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	α^{\ddagger}	Comments
193.6 6	87 23	193.6+x		Х				$E\gamma = 193.4 \ 3$, $I\gamma = 83 \ 20$ for 0-10 s interval; $E\gamma = 193.6 \ 3$,
218.2 3	214 <i>37</i>	218.2	(2 ⁺)	0.0	0^+	[E2]	0.248	$1\gamma = 65 \ 33 \ \text{for } 40-440 \ \text{s interval.}$ $\alpha(\text{K}) = 0.1351 \ 20; \ \alpha(\text{L}) = 0.0856 \ 13; \ \alpha(\text{M}) = 0.0215 \ 4;$ $\alpha(\text{N}) = 0.00517 \ 8$ $\alpha(\text{O}) = 0.000787 \ 12; \ \alpha(\text{P}) = 1.285 \times 10^{-5} \ 19$
								$E\gamma = 218.3 4$, $I\gamma = 132 30$ for 0-10 s interval; $E\gamma = 218.2$
349.0 <i>3</i>	154 32	542.6+x		193.6+x				2, $1\gamma=301$ 51 for 40-440 s interval. E $\gamma=348.6$ 3, $1\gamma=75$ 20 for 0-10 s interval; E $\gamma=348.9$ 2, $1\gamma=187$ 38 for 40-440 s interval.
383.3 4	99 27	601.5	(4 ⁺)	218.2	(2 ⁺)	[E2]	0.0454	$E\gamma=383.85$, $I\gamma=40$ 15 for 0-10 s interval; $E\gamma=383.23$, $I\gamma=163$ 43 for 40-440 s interval
477.8 5	79 24	696.0	0^+	218.2	(2 ⁺)	[E2]	0.0255	$E_{\gamma}=477.6 \ 4, \ I_{\gamma}=70 \ 24 \ for \ 0-10 \ s \ interval; \ E_{\gamma}=477.9 \ 6,$
530.1 6	18 18	1131.6	(6 ⁺)	601.5	(4+)	[E2]	0.0198	$E_{\gamma}=530.1 \ 6, \ I_{\gamma}=18 \ 18 \ for \ 0.10 \ s \ interval; \ E_{\gamma}=530.4 \ 3,$
553.9 <i>3</i>	94 27	1096.5+x		542.6+x				$I\gamma = 97.55$ for 40-440 s interval. E $\gamma = 554.1.2$, $I\gamma = 50.20$ for 0-10 s interval; $E\gamma = 553.9.3$, $I\gamma = 69.32$ for 40-440 s interval.

 † For 0-40 s interval. Energies and intensities for 0-10 s and 40-440 s intervals are given under comments.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁹⁴Re β^- decay:mixed 2012Al05

 $^{194}_{76}\mathrm{Os}_{118}$

$\frac{194}{1}$ Re β^- decay:mixed 2012Al05

