¹⁹⁴Tl ε decay (32.8 min) 1972Am03,2019Ol05

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen and Balraj Singh	NDS 177, 1 (2021)	3-Sep-2021

Parent: ¹⁹⁴Tl: E=260 14; $J^{\pi}=(7^+)$; $T_{1/2}=32.8 \text{ min } 2$; $Q(\varepsilon)=5246 14$; $\%\varepsilon+\%\beta^+$ decay=100.0

¹⁹⁴Tl-E, J^{π} ,T_{1/2}: From Adopted Levels of ¹⁹⁴Tl.

¹⁹⁴Tl-Q(ε): From 2021Wa16.

1972Am03: ¹⁹⁴Tl ions were obtained from spallation of lead by bombarding a PbF₂ target with 660 MeV proton beam from the synchrocyclotron of the Nuclear Problems Laboratory of JINR. γ rays were detected with Ge(Li) detectors and conversion electrons were detected with a β spectrometer with a Si(Li) detector (FWHM=3.2 keV at \approx 200 keV). Measured E γ , I γ , E(ce), I(ce). Deduced levels, J, π , ε -decay branching ratios, log *ft*, conversion coefficients, γ -ray multipolarities.

2019Ol05: ¹⁹⁴Tl ions were produced by a 500-MeV proton beam provided by the TRIUMF main cyclotron impinging on an uranium carbide target, and implanted into a mylar tape at the central focus of the GRIFFIN spectrometer. γ rays were detected with the GRIFFIN array consisting of 15 HPGe clover detectors and 7 cylindrical LaBr₃(Ce) crystals; conversion electrons were detected with a set of 5 in-vacuum LN₂-cooled lithium-drifted silicon detectors (PACES) and a fast 1-mm-thin plastic Zero Degree Scintillator (ZDS). Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma$ (t). Deduced levels, T_{1/2}, transition strengths. Comparisons with available data and theoretical calculations.

Others: 1968Pe13, 1970To14, 1967Na14, 1966Pe06, 1960Ju01, 1974St04, 1976WeZM.

Due to a large gap (≈ 3 MeV) between Q-value=5246 14 and the highest observed level of 2464, the decay scheme is considered incomplete and the branching ratios and log *ft* values are considered as approximated values.

¹⁹⁴Hg Levels

Negative result in the search for superdeformation at low-spin states populated by ¹⁹⁴Tl ε decay. Expected 3600 γ in coincidence with 428 γ (from 428 level) was not observed (1989HeYZ, 1990HeYY).

2138.4 and 2143.5 levels: level population suggested by evaluators based on placements of 227.98 γ and 233.10 γ in (HI,xn γ). In 1972Am03, 227.98 γ is placed from a level at 1292.5 and 233.10 γ is unplaced. The 1292.5 level proposed in 1972Am03 on the basis of energy sums of 219.0 γ and 227.98 γ is discarded by the evaluator. The 227.98 γ is placed with an 8⁻ level at 2138 known from (HI,xn γ) and the 219.0 γ is considered unplaced due to the absence of any other supporting argument.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	0^{+}		
428.2 <i>3</i>	2^{+}	19 ps <i>1</i>	$T_{1/2}$: from (636 γ)(428 γ)(t) with 735 γ and 749 γ also in gate (2019Ol05).
1064.5 4	4+	<3 ps	$T_{1/2}$: from (735 γ)(636 γ)(t) with 428 γ also in gate (2019Ol05).
1799.5 5	6+	-	
1813.5 5	5-	51 ps 6	$T_{1/2}$: from (650γ)(749γ)(t) with 428γ also in gate (2019Ol05). Other: ≤0.15 ns (1970To14, (ce)γ(t)).
1910.4 5	7-	3.61 ns 15	$T_{1/2}$: unweighted average of 3.46 ns 3 (2019Ol05) and 3.75 ns 11 (1970To14). Value of 2019Ol05 is from (255 γ)(735 γ)(t) with 428 γ also in gate; (209 γ)(749 γ)(t) and (209 γ)(111 γ)(t) (2019Ol05).
2138.4 5	8-		
2143.5 5	9-		
2165.8 5	6-		
2179.9 5	5-,6-		
2260.0? 9	$(4,5,6)^{-}$		
2264.7 5	$(5,6)^{-}$		
2374.7 5	6-,7-		
2463.9 5	6-		

[†] From a least-squares fit to γ -ray energies.

[‡] From Adopted Levels.

		nou								
					ε, β^+ radiat	ions				
E(decay)	E(level)	Ιβ ⁺ ‡	I $arepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger\ddagger}$	Comments				
(3042 20)	2463.9	1.80 24	16.0 <i>21</i>	6.5 1	17.8 23	av Eβ=914.8 88; εK=0.7281 23; εL=0.1292 5; εM+=0.04158 14				
(3131 20)	2374.7	1.2 3	9.7 21	6.8 1	10.9 24	av E β =954.3 88; ε K=0.7179 24; ε L=0.1273 5; ε M+=0.04094 15				
(3241 20)	2264.7	0.49 11	10.3 24	8.4 ¹ <i>u</i> 1	10.8 25	av E β =991.5 84; ε K=0.7669 10; ε L=0.1420 3; ε M+=0.04600 9				
(3246 [#] 20)	2260.0?	0.39 8	2.6 5	7.4 1	3.0 6	av Eβ=1005.2 88; εK=0.7040 25; εL=0.1246 5; εM+=0.04007 16				
(3326 20)	2179.9	0.14 9	0.9 5	7.9 <i>3</i>	1.0 6	av E β =1040.8 88; ε K=0.694 3; ε L=0.1227 5; ε M+=0.03944 16				
(3340 [#] 20)	2165.8	<0.4	<3	>7.4	<3	av Eβ=1047.1 89; εK=0.692 3; εL=0.1223 5; εM+=0.03933 16				
(3363 20)	2143.5	0.13 2	2.4 4	9.1 ¹ <i>u</i> 1	2.5 4	av Eβ=1042.9 84; εK=0.7605 12; εL=0.1403 3; εM+=0.04544 10				
(3368 20)	2138.4	1.3 2	7.5 11	6.9 <i>1</i>	8.8 13	av Eβ=1059.3 89; εK=0.688 3; εL=0.1216 5; εM+=0.03910 17				
(3596 20)	1910.4	6.1 23	26 10	6.5 2	32 12	av Eβ=1160.9 89; εK=0.657 3; εL=0.1157 6; εM+=0.03719 18				
(3693 [#] 20)	1813.5	<1.1	<12	>8.5 ¹ <i>u</i>	<13	av Eβ=1183.3 85; εK=0.7392 15; εL=0.1353 4; εM+=0.04377 11				
(3707 20)	1799.5	2.3 11	94	7.0 2	11 5	av Eβ=1210.6 89; εK=0.640 3; εL=0.1127 6; εM+=0.03622 18				

¹⁹⁴Tl ε decay (32.8 min) 1972Am03,2019Ol05 (continued)

[†] From γ +ce intensity balance at each level.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

$\gamma(^{194}\text{Hg})$

I γ normalization: From I(γ +ce)(749 γ and 735 γ)=100, assuming no γ feedings from levels above 1813.5 and no β feedings to g.s., 428.2 and 1064.5 levels. About 14% γ intensity is unplaced but it is unlikely that any of it will affect the normalization factor significantly with the above assumption.

Unplaced γ rays are from 33-min (g.s.) or from 32.8-min isomer (1972Am03).

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	α [@]	Comments
96.90 8	10 2	1910.4	7-	1813.5 5-	E2	6.33	$\alpha(K)=0.624 \ 9; \ \alpha(L)=4.27 \ 7; \ \alpha(M)=1.117 \ 17 \ \alpha(N)=0.277 \ 4; \ \alpha(O)=0.0459 \ 7; \ \alpha(P)=0.0001280 \ 19 \ \% I_{\gamma}=7.7 \ 16 \ E_{\gamma}: from 1968Pe13 using permanent-magnet spectrograph plates. The same value is quoted by 1972Am03. I_{\gamma}: other: 10.7 \ 59 \ (Pb \ target), \ 9.1 \ 46 \ (U \ target) \ (1968Pe13). \ Mult.: \ \alpha(L)exp=4.0 \ 4, \ L/(M+N)=2.9 \ (1972Am03), \ \alpha(L)exp=4.2 \ 8 \ (1968Pe13), \ (L1+L2)/L3=1.24 \ 5. \ (L1+L2$
98.9 <i>1</i>	0.8 3	2264.7	(5,6) ⁻	2165.8 6-	[M1]	8.15	L/M=3.6 4, M/(N+O)=2.7 3 (1960Ju01). α (K)=6.67 10; α (L)=1.137 17; α (M)=0.265 4 α (N)=0.0664 10; α (O)=0.01256 18; α (P)=0.000960 14 %Iy=0.62 23 α (N)=0.77 16
~107.2.2	1.0 2						$\%1\gamma = 0.7710$

 $^{194}_{80}\mathrm{Hg}_{114}\text{--}3$

¹⁹⁴ Tl ε decay (32.8 min) 1972Am03,2019Ol05 (continued)									
$\gamma(^{194}\text{Hg})$ (continued)									
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α [@]	Comments	
110.96 8	8.3 20	1910.4	7-	1799.5 6+	[E1]		0.325	$\begin{aligned} \alpha(\text{K}) = 0.261 \ 4; \ \alpha(\text{L}) = 0.0494 \ 7; \\ \alpha(\text{M}) = 0.01155 \ 17 \\ \alpha(\text{N}) = 0.00285 \ 4; \ \alpha(\text{O}) = 0.000507 \ 8; \\ \alpha(\text{P}) = 2.58 \times 10^{-5} \ 4 \\ \% \text{I}\gamma = 6.4 \ 16 \\ \text{E}_{\gamma}: \text{ other: } 110.8 \ 10 \ (1968 \text{Pe13}). \\ \text{I}_{\gamma}: \text{ other: } 7.6 \ 38 \ (\text{Pb target}), \ 7.3 \ 37 \end{aligned}$	
208.90 <i>18</i>	8.0 20	2374.7	6-,7-	2165.8 6-	E2(+M1)	>2.1	0.40 6	(U target) (1968Pe13). $\alpha(K)=0.21 \ 6; \ \alpha(L)=0.1380 \ 21;$ $\alpha(M)=0.0353 \ 7$ $\alpha(N)=0.00877 \ 16; \ \alpha(O)=0.001499 \ 22;$ $\alpha(P)=2.8\times10^{-5} \ 9$ %I $\gamma=6.2 \ 16$ E $_{\gamma}$: other: 209.7 \ 10 (1968Pe13). I $_{\gamma}$: other: 7.1 \ 36 (Pb target), 6.7 \ 39 (U target) (1968Pe13). Mult.: $\alpha(K)\exp=0.2, \ K/L=1.6, \ K/(M+N)=4 \ 7 (1972 \ 4m03)$	
^x 219.0 5	1.3 3				M1+E2	1.2 5	0.52 15	α(M+H)=4.7 (H)=2AIII05). α(K)=0.37 15; α(L)=0.1155 23; α(M)=0.0285 7 α(N)=0.00712 15; α(O)=0.00126 3; α(P)=5.1×10 ⁻⁵ 22 %Iγ=1.00 24 Mult.,δ: α(K)exp=0.37. On the basis of energy sums, 1972Am03 propose a (3 ⁺) level at 1292 with deexciting transitions of 219.0 and 227.98. However, the evaluators consider this level unlikely due to the absence of a transition to the 428, 2 ⁺ level. Moreover, the 227.98γ most probably corresponds to the 227.6γ known to deexcite an 8 ⁻ level at 2138 level in (HI,xnγ). The multipolarity of the 227.98γ from ce data is consistent with 228γ(θ) data in (HI,xnγ). The 8 ⁻ level is expected to be populated from the (7 ⁺) isomer of ¹⁹⁴ TI.	
227.98 8	8.6 10	2138.4	8-	1910.4 7-	E2+M1	2.1 +17-6	0.35 7	α(K)=0.22 7; α(L)=0.0981 18; α(M)=0.0247 4 α(N)=0.00616 9; α(O)=0.001069 22; α(P)=2.9×10-5 9 %Iγ=6.6 8 Eγ,Iγ: other: 228.4 10, with Iγ=7.3 37 (1968Pe13). 1972AM03 place this γ from a 1292 level which is discarded by evaluators. See comments for 219.0γ. Mult.,δ: α(K)exp=0.31, K/L=1.8, K/(M+N)=8 (1972Am03).	
233.10 <i>15</i>	2.7 4	2143.5	9-	1910.4 7-	E2		0.234	$\alpha(K)=0.1167 \ 17; \ \alpha(L)=0.0880 \ 13; \\ \alpha(M)=0.0226 \ 4 \\ \alpha(N)=0.00562 \ 8; \ \alpha(O)=0.000956 \ 14; \\ \alpha(P)=1.470\times10^{-5} \ 21$	

¹⁹⁴₈₀Hg₁₁₄-4

¹⁹⁴Tl ε decay (32.8 min) 1972Am03,2019Ol05 (continued) $\gamma(^{194}\text{Hg})$ (continued) $I_{\gamma}^{\dagger \#}$ α[@] Mult.[‡] δ^{\ddagger} E_{γ}^{\dagger} E_i(level) J_i^{π} \mathbf{E}_{f} J_{f}^{π} Comments $\%I\gamma = 2.1 \ 3$ E_{γ} : placement based on results in $(HI,xn\gamma)$; unplaced in 1972Am03. Mult.: $\delta(E2/M1) > 5$ from α (K)exp=0.11 (1972Am03). x239.0 7 1.2 3 <1.1 0.55 13 $\alpha(K)=0.43$ 13; $\alpha(L)=0.089$ 4; M1(+E2) $\alpha(M) = 0.02125$ $\alpha(N)=0.00532$ 13; $\alpha(O)=0.00098$ 5; $\alpha(P)=6.1\times10^{-5}$ 18 %Iy=0.93 24 Mult.: $\alpha(K) \exp = 0.46$. 255.40 10 12 2 2165.8 6-1910.4 7-M1(+E2)0.7 5 0.43 12 $\alpha(K)=0.34 \ 11; \ \alpha(L)=0.072 \ 5;$ $\alpha(M)=0.0172 8$ $\alpha(N)=0.00429$ 19; $\alpha(O)=0.00079$ 6; $\alpha(P)=4.8\times10^{-5}$ 16 %Iy=9.3 16 E_{γ} : other: 256.7 15 (1968Pe13). Mult., δ : α (K)exp=0.37, K/L=5.7, K/(M+N)=13 (1972Am03). 284.00 20 2.4 4 2463.9 6-2179.9 5-,6-M1(+E2) < 0.7 0.37 5 $\alpha(K)=0.30$ 5; $\alpha(L)=0.055$ 3; $\alpha(M)=0.0129~6$ α (N)=0.00322 14; α (O)=0.00060 4; $\alpha(P)=4.2\times10^{-5}$ 7 %Iy=1.9 3 Mult., δ : α (K)exp=0.38 (1972Am03). $\alpha(K)=0.088\ 24;\ \alpha(L)=0.0352\ 18;$ 298.1 2 2.7 3 2165.8 6-2463.9 6-E2(+M1) >2 0.13 3 $\alpha(M)=0.0088~4$ α (N)=0.00220 9; α (O)=0.000384 20; $\alpha(P) = 1.2 \times 10^{-5} 4$ %I γ =2.1 3 E_{γ}, I_{γ} : other: 298.8 10 with $I_{\gamma}=2.2$ 22 (Pb target) (1968Pe13). Mult., δ : α (K)exp=0.089 (1972Am03). ^x299.5 5 1.3 4 %Iy=1.0 3 E2 0.0882 x319.80 10 5.1 10 $\alpha(K)=0.0541 \ 8; \ \alpha(L)=0.0257 \ 4;$ α(M)=0.00651 10 α (N)=0.001619 23; α (O)=0.000280 4; $\alpha(P) = 7.00 \times 10^{-6} 10$ $\%I\gamma = 3.9 8$ Mult.: $\alpha(K) \exp (-0.041)$ gives $\delta(E2/M1) > 10.$ E_{γ} : other: 322 2, $I\gamma=6.5$ 33 (Pb target) (1968Pe13). 352.20 25 2.2 4 2165.8 6-1813.5 5-M1+E20.9 4 0.16 5 $\alpha(K)=0.13$ 4; $\alpha(L)=0.026$ 4; $\alpha(M)=0.0061 8$ $\alpha(N)=0.00153 \ 18; \ \alpha(O)=0.00028 \ 4;$ $\alpha(P)=1.7\times10^{-5}~6$ %Iy=1.7 3 Mult., δ : α (K)exp=0.13 (1972Am03). 366.50 25 2.3 4 2179.9 5-.6-1813.5 5-M1(+E2) < 0.80.18 3 $\alpha(K)=0.15 3; \alpha(L)=0.026 3;$ $\alpha(M) = 0.0061 \ 6$ α (N)=0.00153 *14*; α (O)=0.00029 *3*; $\alpha(P)=2.1\times10^{-5}$ 4 %Iy=1.8 3 Mult., δ : α (K)exp=0.18 (1972Am03). 380.5 3 1.8 3 2179.9 5-,6-1799.5 6+ [E1] 0.01610 $\alpha(K)=0.01331$ 19; $\alpha(L)=0.00215$ 3;

)							
	γ ⁽¹⁹⁴ Hg) (continued)									
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	J_i^π	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α [@]	Comments		
428.20 25	130 6	428.2	2+	0.0 0+	E2		0.0397	$\begin{array}{c} \alpha(\mathrm{M}) = 0.000497\ 7\\ \alpha(\mathrm{N}) = 0.0001236\ 18;\\ \alpha(\mathrm{O}) = 2.29 \times 10^{-5}\ 4;\\ \alpha(\mathrm{P}) = 1.532 \times 10^{-6}\ 22\\ \%\mathrm{Iy} = 1.39\ 24\\ \mathrm{Mult.:\ from\ } \Delta J^{\pi};\ \alpha(\mathrm{K})\mathrm{exp}\\ \mathrm{gives\ } \delta(\mathrm{M2/E1}) = 0.88\ 23\ \mathrm{for}\\ \mathrm{E1+M2,\ which\ is\ highly}\\ \mathrm{unlikely.}\\ \alpha(\mathrm{K}) = 0.0274\ 4;\ \alpha(\mathrm{L}) = 0.00927\\ 13;\ \alpha(\mathrm{M}) = 0.00230\ 4\\ \alpha(\mathrm{N}) = 0.000574\ 9;\\ \alpha(\mathrm{O}) = 0.0001012\ 15;\\ \alpha(\mathrm{P}) = 3.62 \times 10^{-6}\ 5\\ \%\mathrm{Iy} = 100\ 7\\ \mathrm{E_{\gamma}:\ other:\ } 428.4\ 5\ (1968\mathrm{Pe13}).\\ \mathrm{I_{\gamma}:\ total\ Iy} = 220\ 25\\ (1972\mathrm{Am03})\ \mathrm{distributed\ in}\\ \mathrm{two\ parts\ on\ the\ basis\ of}\\ \mathrm{intensity\ balance\ at\ } 428\ \mathrm{level}.\\ \mathrm{The\ other\ component\ belongs}\\ \mathrm{to\ } ^{194}\mathrm{T1\ }\varepsilon\ \mathrm{decy\ } (33.0\ \mathrm{min}).\\ \mathrm{Other\ total\ Iy:\ } 232\ 35\ (\mathrm{Pb\ target}),\ 610\ 91\ (\mathrm{U\ target}) \end{array}$		
446.5 7	3.7 7	2260.0?	(4,5,6)-	1813.5 5-	M1+E2	1.1 + <i>15–7</i>	0.08 4	(1968Pe13). Mult.: (L1+L2)/L3=5.1 10, K/L=3.0 6, L/M=1.3 5 (1960Ju01). α (K)=0.06 4; α (L)=0.012 4; α (M)=0.0029 8 α (N)=0.00072 20; α (O)=0.00013 4; α (P)=8.E-6		
451.0 7	6.5 15	2264.7	(5,6)-	1813.5 5-	M1+E2	1.7 +27-8	0.06 <i>3</i>	5 %I γ =2.9 6 Mult., δ : α (K)exp=0.093, K/L=3.5 (1972Am03). α (K)=0.044 22; α (L)=0.010 3; α (M)=0.0024 6 α (N)=0.00060 14; α (O)=0.00011 3; α (P)=6.E-6		
^x 462.5 7	6.0 20				M1+E2	1.2 5	0.065 21	$ \begin{array}{l} & \overset{4}{} \\ & & & \\ \% I\gamma = 5.0 \ 12 \\ Mult., \delta: \ \alpha(K) exp = 0.063, \\ & & \\ K/L = 3.3 \ (1972 Am03). \\ & \alpha(K) = 0.052 \ 19; \ \alpha(L) = 0.0105 \\ & & \\ 22; \ \alpha(M) = 0.0025 \ 5 \\ & & \\ \alpha(N) = 0.00063 \ 12; \\ & & \\ \alpha(O) = 0.000116 \ 24; \\ & & \\ \alpha(P) = 7.E - 6.3 \end{array} $		
464.5 7	3.0 10	2374.7	6 ⁻ ,7 ⁻	1910.4 7-	E2(+M1)	>2	0.040 8	%Iy=4.6 16 Mult.: $\alpha(K)\exp=0.051$. $\alpha(K)=0.030$ 7; $\alpha(L)=0.0079$ 8; $\alpha(M)=0.00193$ 18 $\alpha(N)=0.00048$ 5; $\alpha(O)=8.7\times10^{-5}$ 9; $\alpha(P)=4.0\times10^{-6}$ 10		

¹⁹⁴Tl ε decay (32.8 min) 1972Am03,2019Ol05 (continued) $\gamma(^{194}\text{Hg})$ (continued) $I_{\gamma}^{\dagger \#}$ α[@] δ^{\ddagger} Mult.[‡] E_{γ}^{\dagger} E_i(level) \mathbf{J}_i^{π} \mathbf{E}_{f} \mathbf{J}_{f}^{π} Comments %Iy=2.3 8 Mult.,δ: α(K)exp=0.11, K/L=2.6 (1972Am03). ^x510.9[&] 3 11 2 %Iy=8.5 16 Probably annihilation radiation. 553.2 3 6.0 15 2463.9 1910.4 7-M1(+E2) < 0.8 0.061 10 $\alpha(K)=0.050$ 9; $\alpha(L)=0.0085$ 11; 6 $\alpha(M)=0.00197\ 24$ $\alpha(N)=0.00049$ 6; $\alpha(O)=9.3\times10^{-5}$ 12; $\alpha(P)=6.9\times10^{-6}$ 12 %Iy=4.6 12 E_{γ} : other: 553.4 10 (1968Pe13). Mult.: α (K)exp=0.063 (1972Am03). x600.5 7 2.2 6 $%I\gamma = 1.75$ 1064.5 4+ 0.01542 $\alpha(K)=0.01173 \ 17; \ \alpha(L)=0.00280 \ 4;$ 636.30 25 130 6 428.2 2+ E2 α(M)=0.000678 10 $\alpha(N)=0.0001693$ 24; $\alpha(O)=3.06\times10^{-5}$ 5; $\alpha(P)=1.557\times10^{-6}$ 22 %Iv=100 7 E_v: other: 636.8 5 (1968Pe13). I_{γ} : total $I_{\gamma}=150\ 20\ (1972\text{Am03})$ distributed in two parts on the basis of intensity balance at 1064 level. The other component belongs to $^{194}\mathrm{Tl}~\varepsilon$ decay (33.0 min). Other total Iv: 151 23 (Pb target), 189 29 (U target) (1968Pe13). Mult.: $\alpha(K) \exp [-0.013 (1972 \text{Am03})]$, 0.014 4 (1968Pe13), 0.013 (1966Pe06), α (L)exp=0.0028, K/L=4.5 (1972Am03). 650.3 3 92 2463.9 6-1813.5 5-M1+E21.3 5 0.026 8 $\alpha(K)=0.021$ 7; $\alpha(L)=0.0040$ 9; α(M)=0.00094 20 α (N)=0.00023 5; α (O)=4.4×10⁻⁵ 10; $\alpha(P)=2.9\times10^{-6}$ 9 %Iy=6.9 16 Mult., δ : α (K)exp=0.021 (1972Am03). 664.2 7 1.5 4 2463.9 1799.5 6+ 6- $%I\gamma = 1.2 3$ ^x675.7[&] %Iy=0.77 1.0 ^x682.7[&] 0.7 $\% I\gamma = 0.54$ ^x691.0[&] 0.9 $\% I\gamma = 0.69$ x694.8 1.3 $%I\gamma = 1.00$ ^x702.2[&] 1.6 %Iy=1.23 ^x711.0[&] 1.7 $%I\gamma = 1.31$ ^x719.8[&] 1.8 %Iγ=1.39 1799.5 1064.5 4+ 735.0 3 29 6 6^{+} E2 0.01129 *α*(K)=0.00878 *13*; *α*(L)=0.00191 *3*; α(M)=0.000458 7 α (N)=0.0001144 *16*; α (O)=2.09×10⁻⁵ 3; $\alpha(P)=1.162\times10^{-6}$ 17 %Iγ=22 4 E_{γ} : other: 734.7 5 (1968Pe13). I_{γ} : others: 31 6 (Pb target), 29 6 (U target) (1968Pe13). Mult.: $\alpha(K) \exp (1972 \text{Am03})$, 0.011 3 (1968Pe13).

	19/2 Amos, 20190105 (continued)								
γ ⁽¹⁹⁴ Hg) (continued)									
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [‡]	α [@]	Comments		
749.0 <i>3</i>	100	1813.5	5-	1064.5 4+	E1	0.00395	$\begin{aligned} &\alpha(\text{K}) = 0.00330 \ 5; \ \alpha(\text{L}) = 0.000502 \ 7; \ \alpha(\text{M}) = 0.0001154 \ 17 \\ &\alpha(\text{N}) = 2.88 \times 10^{-5} \ 4; \ \alpha(\text{O}) = 5.40 \times 10^{-6} \ 8; \\ &\alpha(\text{P}) = 3.95 \times 10^{-7} \ 6 \\ &\%_{\text{L}} \gamma = 77 \ 4 \end{aligned}$		
							E_{γ} : other: 748.9 5 (1968Pe13). Mult.: α (K)exp=0.0033 (1972Am03), 0.0034 10 (1968Pe13) 0.0024 (1966Pe06)		
^x 1118.7 10							E_{y} : from 1968Pe13 only.		
^x 1383.0 ^{&}	0.9						%Iγ=0.69		
^x 1424.4 ^{&}	0.8						$\%$ I γ =0.62		
^x 1445.9 <mark>&</mark>	0.7						$\%$ I γ =0.54		
^x 1530.7 ^{&}	1.3						$\%$ I γ =1.00		
							E_{γ} : 2003Su30 assign a 1529.9 5 (I γ =2.0 3) to 33.0 min, 2 ⁻ activity.		
^x 1550.3 ^{&}	2.3						%Iy=1.77		
							E_{γ} : 2003Su30 assign a 1551.6 5 (I γ =4.2 4) to 33.0 min, 2 ⁻ activity.		
^x 1640.0 ^{&}	0.9						%Iy=0.69		
^x 1676 ^{&}	0.6						%Iy=0.46		
^x 1691.4 ^{&}	1.3						%Iy=1.00		
^x 1822 ^{&}	0.7						%Iy=0.54		
^x 1832.0 ^{&}	0.6						%I γ =0.46 Proposed placement with a tentative 2260 level (1972Am03) considered unlikely since possible direct ε feeding from (7 ⁺) suggests J(2260)>4.		
^x 1936.0 ^{&}	0.9						%Iy=0.69		

¹⁹⁴Tl ε decay (32.8 min) 1972Am03,2019Ol05 (continued)

[†] From 1972Am03, unless otherwise noted. Quoted values of intensities are relative to $I\gamma(749\gamma)=100$.

[‡] From ce data (1972Am03,1968Pe13) given under comments where available. The same values are adopted in Adopted Gammas. For selected transitions, data are also available from 1968Pe13. Uncertainty of 30% in ce data from 1972Am03 is assumed by evaluators when deducing δ value.

[#] For absolute intensity per 100 decays, multiply by 0.77 4.

^(a) Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

¹⁹⁴Tl ε decay (32.8 min) 1972Am03,2019Ol05

