¹⁸⁶W(¹³C,5nγ) **1986Hu02**

	History									
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	Jun Chen and Balraj Singh	NDS 177, 1 (2021)	3-Sep-2021							

Includes ${}^{186}W({}^{12}C,4n\gamma)$ from 2018Es04.

1986Hu02(also 1984Hu10): E=84-87 MeV ¹³C beams were produced from ANU 14 UN Pelletron. Target was 97% enriched ¹⁸⁶W power with a thickness of about 4 mg/cm². γ rays were detected by Ge detectors with NaI(Tl) anti-Compton shields. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma(\theta)$. Deduced levels, J, π , γ -ray multipolarities. Comparisons with Total-routhian surface and cranking-model calculations.

2018Es04: E=64 MeV ¹²C beam was produced from the Cologne 10 MV FN-Tandem accelerator. Target was 65 mg/cm² ¹⁸⁶W with 99.79% enrichment with 102 mg/cm² Bi and 108 mg/cm² Cu backing. γ rays were detected using eight HPGe detectors and nine LaBr₃(Ce) scintillation detectors (six with BGO suppression shields). Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma$ (t). Deduced lifetime of first 2⁺, 4⁺ and 9⁻ levels using fast technique and the generalized centroid difference (GCD) method. Comparison to interacting boson approximation model with configuration mixing model with both phenomenological and microscopic basis.

2001Gu31: measured half-lives of 7⁻ and 8⁻ levels by recoil-shadow asymmetry method (RSAM). Reaction for population of the states not specified by the authors.

See also $(\alpha, xn\gamma)$ dataset for several in-beam γ -ray studies between 1974 and 1985.

¹⁹⁴Hg Levels

Quasiparticle labeling scheme (1986Hu02): A: $\nu 1/2[660]$, $\alpha =+1/2$. B: $\nu 1/2[660]$, $\alpha =-1/2$. C: $\nu 3/2[651]$, $\alpha =+1/2$. D: $\nu 3/2[651]$, $\alpha =-1/2$. E: $\nu 1/2[521]$, $\alpha =-1/2$. F: $\nu 1/2[521]$, $\alpha =-1/2$. Ap: $\pi/2[550]$, $\alpha =-1/2$. Bp: $\pi/2[550]$, $\alpha =+1/2$.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0#	0^{+}		
427.9 [#] 2	2^{+}	14.6 ps 28	$T_{1/2}$: from (636.6 γ)(427.9 γ)(t) and generalized centroid difference (GCD) method (2018Es04).
1064.5 [#] 3	4+	4.9 ps 28	$T_{1/2}$: from (748.9 γ)(636.3 γ)(t) and (734.8 γ)(636.3 γ)(t), and using GCD method (2018Es04).
1799.3 [#] 4	6+		
1813.3 ^{&} 4	5-		
1910.4 ^{&} 4	7-	4.0 ns 6	$T_{1/2}$: from 2001Gu31, recoil-shadow asymmetry method.
2138.0 ^{<i>a</i>} 4	8-	1.1 ns 5	$T_{1/2}$: from 2001Gu31, recoil-shadow asymmetry method.
2143.3& 4	9-	302 ps 9	$T_{1/2}$: from (280.2 γ)(232.9 γ)(t) and GCD method (2018Es04). Other measured values in 2018Es04: 284 ps 28 from slope method, and 270 ps 14 from convolution method; none of these adopted by the authors as time-correlated background contributions were not taken into account.
2364.2 [@] 4	8+		
2423.6 [@] 4	10^{+}		
2475.7 [@] 5	12^{+}		
2561.8 ^{<i>a</i>} 4	10^{-}		
2687.9 ^{&} 5	11^{-}		
2888.6 [@] 5	14^{+}		
3173.0 ^{<i>a</i>} 5	12-		
3394.1 ^{&} 5	13-		

 $^{186}W(^{13}C,5n\gamma)$

			continued)				
E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	J#‡	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	J ^{π‡}
3531.6 [@] 5	16+	4317.6 ^f 6	16+	5522.7 ^f 7	20^{+}	6676.3 ^e 10	(22 ⁺)
3747.7 ^d 5	14-	4491.2 7	$17^{(-)}$	5578.4 <mark>b</mark> 7	22^{+}	6815.3 <mark>8</mark> 9	(24,25)
3819.9 6	(15 ⁻)	4498.0 [°] 6	19-	5610.0 <mark>8</mark> 8	(20,21)	6834.3 ^e 10	(24+)
3879.3 [°] 6	15-	4520.9 ^g 6	(16,17)	5700.3 ^d 8	22^{-}	6941.3 ⁰ 9	(25 ⁻)
3984.0 ^d 6	16-	4797.5 ^f 6	18^{+}	6049.6 [°] 8	(23 ⁻)	6989.4 <mark>°</mark> 9	(26 ⁺)
4004.6? <mark>8</mark> 8	(14,15)	4896.7 <mark>d</mark> 7	20^{-}	6120.3 ⁸ 9	(22,23)	7304.1 ^e 10	(28^+)
4015.1 ^{<i>f</i>} 5	14+	4985.6 <mark>b</mark> 6	20^{+}	6256.6 8		7767.9? ^C 10	(27 ⁻)
4114.8 ^c 6	17-	5103.3 <mark>8</mark> 7	(18,19)	6349.3? <mark>f</mark> 9	(22^{+})	7784.4 <mark>°</mark> 10	(30^{+})
4275.2 [@] 6	18^{+}	5163.8 [°] 7	21-	6411.0 ^b 8	24+		
4289.9 ^d 6	18-	5265.9 [@] 7	20^{+}	6645.6 ^d 9	24-		

1986Hu02 (continued)

[†] From a least-squares fit to γ -ray energies.

[‡] As proposed by 1986Hu02, based on $\gamma(\theta)$ data, previously known assignments for levels up to 16⁺ or so, and band assignments. When considered in the Adopted Levels, assignments are placed under parentheses by evaluators, where no other firm experimental arguments are available. See the Adopted Levels.

- # Band(A): g.s. band.
- [@] Band(B): AB band, α =0. Crossing frequency from g.s. band to AB band=0.206 MeV (1986Hu02).
- & Band(C): AE band, $\alpha = 1$.
- ^{*a*} Band(D): AF band, $\alpha = 0$.

^b Band(E): ABCD band, α =0. Average g factor=0.25 2 (1998We23,1999We04,2014StZZ, transient field method). Crossing frequency from AB band to ABCD band=0.348 MeV (1986Hu02).

^c Band(F): ABCE band, α =1. Average g factor=0.26 3 (1998We23,1999We04,2014StZZ, transient field method). Crossing frequency from AE band to ABCE band=0.239 MeV (1986Hu02).

^d Band(G): ABCF band, α =0. Average g factor=0.27 2 (1998We23,1999We04,2014StZZ, transient field method). Crossing frequency from AF band to ABCF band=0.221 MeV (1986Hu02).

^{*e*} Band(H): ABCDA_pB_p band, α =0. Crossing frequency from ABCD band to ABCDA_pB_p band<0.36 MeV (1986Hu02).

^{*f*} Band(I): ABEF band, α =0. Crossing frequency from AB band to ABEF band \approx 0.52 MeV (1986Hu02).

^g Band(J): $\nu i_{13/2}^2 \otimes \pi h_{11/2}^2$. Tentative assignment.

$\gamma(^{194}\text{Hg})$

A₂ and A₄ values under comments are from $\gamma(\theta)$ in 1986Hu02, unless otherwise stated.

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	Comments
52.0 2	0.38	2475.7	12+	2423.6	10+	[E2]	E_{γ} : from ce data in (α ,4n γ) (1983Gu05).
							I_{γ} : deduced from intensity balance at 2476 level, assuming no side feeding to this level.
59.5	0.34	2423.6	10^{+}	2364.2	8+	[E2]	E_{γ} : from ce data in (α ,4n γ) (1983Gu05).
							I_{γ} : deduced from $I(\gamma+ce)$ balance at 2424 level that, $I(\gamma+ce)(52.0\gamma)=I(\gamma+ce)(59.5\gamma+280.2\gamma).$
97.0 2	11 <i>1</i>	1910.4	7-	1813.3	5-		$A_2 = +0.20 6$
111.0 3	8.6 9	1910.4	7-	1799.3	6+	(E1)	$A_2 = -0.17 \ 10$
130.8 ^a 4		4114.8	17^{-}	3984.0	16-		
^x 145.9 4	1.7 7						$A_2 = +0.02 \ 10$
155.1 4	1.2 5	6989.4	(26^{+})	6834.3 ((24^{+})		$A_2 = +0.34 \ 10$
158.0 4	0.4 2	6834.3	(24+)	6676.3	(22+)		A ₂ =+0.22 20

Continued on next page (footnotes at end of table)

¹⁸⁶W(¹³C,5nγ) **1986Hu02** (continued)

γ (¹⁹⁴Hg) (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	Comments
208.0 4	2.5 5	4498.0	19-	4289.9	18-		$A_2 = +0.08 \ 10$
227.6 2	12 <i>I</i>	2138.0	8-	1910.4	7-		$A_2^2 = -0.75 4$; $A_4 = +0.03 6$
232.9 2	40 2	2143.3	9-	1910.4	7-		$A_2 = +0.26 \ 3; \ A_4 = -0.09 \ 4$
235.5 4	<21	4114.8	17-	3879.3	15-	(Q)	$A_2 = +0.39 5; A_4 = -0.11 7$
							235.5 γ and 236.3 γ are unresolved, combined I γ =21 2; $\gamma(\theta)$ for the doublet.
236.3 4	<21	3984.0	16-	3747.7	14-		
x253.3 3	4.4 9						$A_2 = -0.16\ 25$
~265.6 4	0.5 2	4015 1	1.4+	27477	1.4-		$A_2 = -0.23$ 19 $A_2 = +0.23$ 15
207.3 4	22.1	2423.6	$14^{-10^{+}}$	2143.3	0-	[F1]	$A_2 = -0.14$ 3: $A_4 = -0.07$ 4
302.5^{a} 4	22 1	4317.6	16+	4015.1	14+		112-0.115, 114-0.077
305.9.2	11.7	4289.9	18-	3984.0	16-	0 [@]	$\Delta_{2} = \pm 0.41$ 3: $\Delta_{4} = -0.18$ 5
314.7 4	11 1	7304.1	(28^+)	6989.4	(26^+)	Q	$A_2 = -0.405; A_4 = -0.097$
01117		,00111	(20)	070711	(20)		Complex line with total $I\gamma=4.5$ 9.
							$\gamma(\theta)$ for unresolved line, as negative A ₂ is
							inconsistent $\Delta J=2$, Q transition as suggested by ΔJ^{π} .
^x 328.2 4	1.0 ^{&} 4						$A_2 = +0.27 \ 10$
333.6 ^d 4	1.0 4	4317.6	16+	3984.0	16-		-
$x_{335,1}^{b} 4$	1.2.5						
x345 3 ^b 4	$1.7^{\&} 7$						$A_2 = +0.24$ 12
353.6 4	0.6 3	3747.7	14-	3394.1	13-		$A_2 = -0.12$ 12
$x_{359.7}^{b} 4$	0.7.3						$A_2 = -0.20.15$
^x 366.0 4	0.4 2						$A_2 = -0.5 4$
^x 377.9 ^b 4	0.6 3						A ₂ =-0.5 7
383.2 4	8 <mark>&</mark> 3	4498.0	19-	4114.8	17-	(Q)	$A_2 = +0.37 4$; $A_4 = -0.12 6$
							I γ and $\gamma(\theta)$ for a complex line.
412.9 2	41 2	2888.6	14+	2475.7	12+	Q [@]	$A_2 = +0.36 \ 3; \ A_4 = -0.13 \ 4$
418.5 <i>3</i>	4.8 10	2561.8	10^{-}	2143.3	9-	_	$A_2 = +0.42 8; A_4 = +0.25 10$
423.8 2	17 <i>1</i>	2561.8	10-	2138.0	8-	Q [@]	A ₂ =+0.42 7; A ₄ =-0.15 10
427.9 2	100	427.9	2+	0.0	0^{+}	Q [@]	$A_2 = +0.30 2; A_4 = -0.09 3$
^x 440.0 4	1.1 ^{&} 5						
^x 442.4 ^b 4	0.3 1						A ₂ =+0.8 4
^x 454.3 ^b 4	0.4 2						$A_2 = +0.5 4$
^x 460.4 4	1.9 8						$A_2 = -0.21 \ 10; A_4 = +0.01 \ 13$
^x 472.6 ^b 4	0.8 3						$A_2 = -0.5 4$
480.0 4	3.3 <mark>&</mark> 13	4797.5	18+	4317.6	16+	(Q)	$A_2 = +0.46 \ 10; A_4 = -0.16 \ 12$
							Iy and $\gamma(\theta)$ for a complex line.
480.3 4	1.0 ^{&} 4	7784.4	(30+)	7304.1	(28^{+})		$A_2 = +0.46 \ 10; A_4 = -0.16 \ 12$
							$\gamma(\theta)$ for a doublet.
485.0 [°] 4	10 ^C 1	3173.0	12-	2687.9	11-		$A_2 = +0.44 3; A_4 = -0.07 4$
485.2 ^c 4	10 ^c 1	3879.3	15-	3394.1	13-		
506.7 <i>3</i>	5.0 10	5610.0	(20,21)	5103.3	(18,19)	(Q) [@]	$A_2 = +0.22 \ 10; A_4 = -0.10 \ 12$
507.5 ^{ad} 4		4797.5	18+	4289.9	18-	\sim	
510.3 ^{<i>a</i>} 4		6120.3	(22,23)	5610.0	(20,21)		
516.2 ^{ad} 4		4520.9	(16.17)	4004.6?	(14,15)		
x532.1 4	1.5 <mark>&</mark> 6		(,-,)		(,)		$A_2 = 0.0.3$
^x 533.0 4	1.3 5						$A_2 = +0.14$

Continued on next page (footnotes at end of table)

¹⁸⁶W(¹³C,5nγ) **1986Hu02** (continued)

γ ⁽¹⁹⁴Hg) (continued)</sup>

${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^π	E_f	J_f^{π}	Mult. [#]	Comments
541.6 ^d 4	0.9 4	6120.3	(22,23)	5578.4	22+		A ₂ =+1.0 5
544.6 2 x548 8 4	18 <i>I</i> 16 7	2687.9	11-	2143.3	9-	Q [@]	$A_2 = +0.39 3; A_4 = -0.13 4$
x554 3 4	1.07 $1.3^{\&} 5$						$A_2 = +0.3910$ $A_2 = +0.28.8$; $A_4 = 0.00.10$
565.0 2	31.2	2364.2	8+	1799.3	6+	0 [@]	$A_2 = +0.31 2; A_4 = -0.10 3$
574.7 2	23 2	3747.7	14-	3173.0	12-	$\overline{Q}^{@}$	$A_2 = +0.33 3; A_4 = -0.13 4$
578.4 4	1.7 7	6989.4	(26 ⁺)	6411.0	24+		$A_2 = +0.20 \ 10$
582.4 4	<3.9	5103.3	(18,19)	4520.9	(16,17)		$A_2 = -0.05$ 15 582 4y and 583 by are unresolved with combined
							$I\gamma=3.9$ 8.
502 1 1	-2.0	4114 0	17-	25216	16+		$\gamma(\theta)$ for 582.4 γ +583.1 γ .
502 8 3	< 3.9 7 8 8	4114.0 5578 /	17 22+	4085 6	10 ⁺	0@	$A_{2} = 10.435$; $A_{2} = 0.187$
592.8 J 606 8 4	$58^{\circ} 23$	4896 7	20-	4985.0	20 18 ⁻	Q	$A_2 = +0.45$ J, $A_4 = -0.16$ /
611.2 4	<33	3173.0	12^{-}	2561.8	10-	(Q)	A ₂ =+0.37 4; A ₄ =-0.13 5
							611.2 γ and 612.1 γ are unresolved with combined $I\gamma$ =33 2.
(12.1.4	22	5102.2	(10.10)	4401.0	17(-)		$\gamma(\theta)$ for 611.2 γ +612.1 γ .
612.14 $6213^{a}4$	<33	5103.3 4015 1	(18,19) 14^+	4491.2 3394 1	13-		
624.4^{ad} 4		5610.0	(20.21)	4985.6	20^{+}		
636.6 2	97 5	1064.5	(,) 4 ⁺	427.9	2^{+}	Q [@]	A ₂ =+0.29 2; A ₄ =-0.10 3
643.0 2	28 2	3531.6	16 ⁺	2888.6	14 ⁺	$Q^{@}$	$A_2 = +0.39 4; A_4 = -0.17 6$
665.8 <i>3</i>	7.0 7	5163.8	21-	4498.0	19-	Q [@]	A ₂ =+0.41 5; A ₄ =-0.18 6
671.3 4	1.9 8	4491.2	$17^{(-)}$	3819.9	(15^{-})		$A_2 = +0.39\ 20$
6/8.2.4 x687.5.3	1.2.5	6256.6		5578.4	221		$A_2 = +0.06\ 20$ $A_2 = +0.03\ 6:\ A_4 = -0.24\ 9$
695.0 <i>3</i>	2.6 5	6815.3	(24,25)	6120.3	(22,23)		$A_2 = +0.23 \ 20$
701.0 4	0.8 3	4520.9	(16,17)	3819.9	(15 ⁻)	. @	
706.2 2	10 1	3394.1	13-	2687.9	11-	Q	$A_2 = +0.39 4; A_4 = -0.16 6$
710.4 2 713 9 4	16 <i>I</i> 0 7 3	4985.6 6834 3	20^+ (24 ⁺)	4275.2	18^+ (22.23)	Q	$A_2 = +0.43 4; A_4 = -0.19 6$
$x_{721} 4^{b} 4$	115	0054.5	(24)	0120.5	(22,23)		$A_{2}=+0.53.20$
725.2 4	2.0 8	5522.7	20^{+}	4797.5	18+	Q	$A_2 = +0.44 \ 10$
734.8 2	44 <i>3</i>	1799.3	6+	1064.5	4+	Q [@]	A ₂ =+0.36 3; A ₄ =-0.13 4
743.6 2	44 3	4275.2	18 ⁺	3531.6	16 ⁺	Q ^(@)	$A_2 = +0.415; A_4 = -0.146$
748.8 2	383 18 <mark>&</mark> 7	1813.3	5	1004.5	4	(E1)	$A_2 = -0.19$ 3; $A_4 = -0.04$ 4 $A_5 = +0.42$ 10; $A_4 = +0.03$ 15
$x_{7660}^{b} 4$	1.6 7						$A_2 = +0.42$ 10, $A_4 = +0.05$ 15 $A_2 = +0.42$ 15
^x 774.6 4	0.9 4						$A_2 = +0.43 \ I5$ $A_2 = +0.43 \ I5$
^x 776.5 4	0.9 4						$A_2 = -0.40 \ 20$
^x 786.4 ^b 4	1.5 6						$A_2 = -0.21 \ 10$
x791.2 ⁰ 4	1.56	5700.2	22-	1806 7	20-	(0)	$A_2 = +0.49 \ 12$
826 6 ^{cd} 1	1.2° 5	5700.5 6340 39	(22^{+})	4090.7	20 20 ⁺		$A_2 = \pm 0.35 \ I0, \ A_4 = \pm 0.02 \ I3$ $A_2 = \pm 0.20 \ I5$
826.6^{cd} 4	1.2° 5	7767 9?	(22)	6941 3	(25^{-})		112 - 10.20 15
828.3 ^d 4	0.6 3	5103.3	(18,19)	4275.2	18+		
832.6 3	3.6 7	6411.0	24+	5578.4	22^{+}		A ₂ =+0.15 15
^x 868.8 ^b 4	1.7 <mark>&</mark> 7						$A_2 = +21 \ 10; \ A_4 = -0.14 \ 12$

Continued on next page (footnotes at end of table)

¹⁸⁶W(¹³C,5nγ) **1986Hu02** (continued)

γ (¹⁹⁴Hg) (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	Comments
885.8 4	4.0 <mark>&</mark> 16	6049.6	(23 ⁻)	5163.8	21-		
891.7 4	1.9 8	6941.3	(25 ⁻)	6049.6	(23 ⁻)	(Q) [@]	A ₂ =+0.40 <i>10</i> ; A ₄ =-0.09 <i>12</i>
^x 897.0 4	0.9 4						$A_2 = +0.3 6$
^x 920.0 4	1.4 6						$A_2 = -0.14\ 20$
931.4 4	3.0 ^{&} 12	3819.9	(15 ⁻)	2888.6	14+	D+Q	A ₂ =-0.76 <i>10</i> A ₂ is consistent with ΔJ =1, D+Q. 1986Hu02 suggest pure dipole, but expected A ₂ \approx -0.3 for ΔJ =1, dipole.
^x 933.0 4	1.5 <mark>&</mark> 6						$A_2 = -0.05\ 20$
945.2 4	1.0 4	6645.6	24-	5700.3	22-		$A_2 = +0.7 3$
^x 953.2 4	0.6 3						$A_2 = +0.8 \ 4$
989.2 4	2.0 <mark>&</mark> 8	4520.9	(16,17)	3531.6	16+		
990.7 4	3.1 ^{&} 12	5265.9	20^{+}	4275.2	18^{+}	(Q)	A ₂ =+0.18 12
^x 995.3 ^b 4	0.9 4						A ₂ =-0.15 15
$x_{1005.7}^{b} 4$	1.2 5						A ₂ =+0.25 <i>12</i>
^x 1014.7 ^a 4							
$x_{1027.4}^{b} 4$	1.9 8						A ₂ =+0.05 15
^x 1096.5 4	1.6 7						$A_2 = -0.56 \ 10$
1116.0 ^d 4	1.9 8	4004.6?	(14,15)	2888.6	14^{+}		Complex line. Intensity not corrected.
^x 1120.5 4	0.7 3						$A_2 = -0.5 3$
1126.5 4	0.4 2	4015.1	14^{+}	2888.6	14^{+}		
1152.0 ^d 4	0.4 2	6676.3	(22^{+})	5522.7	20^{+}		
^x 1184.0 4	0.8 3						$A_2 = +0.09\ 25$

[†] From 1986Hu02, unless otherwise noted. Uncertainty assigned by evaluators as 0.2 for $I\gamma \ge 10$, 0.3 for $I\gamma = 2$ to 10, and 0.4 for $I\gamma < 2$, based on a comment by 1986Hu02 that it varies from 0.2 to 0.4 keV.

[‡] From 1986Hu02, unless otherwise noted. Uncertainty assigned by evaluators as 5% for $I\gamma \ge 10$, 10% for $I\gamma = 5$ -10, 20% for $I\gamma = 2$ to 5, and 40% for $I\gamma < 2$, based on a comment by 1986Hu02 that uncertainties are 5% to 40%.

[#] From $\gamma(\theta)$ data in 1986Hu02.

[@] The $\gamma(\theta)$ data in 1986Hu02 suggest $\Delta J=2$, stretched quadrupole (E2) transition.

[&] Complex line; I γ deduced from $\gamma\gamma$ -coin (1986Hu02).

^{*a*} Complex line; I γ not available (1986Hu02).

^b A transition similar in energy is reported in ($^{48}Ca,4n\gamma$) (1996Fo01). See $^{150}Nd(^{48}Ca,4n\gamma)$ for placement.

^c Multiply placed with undivided intensity.

^d Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

¹⁸⁶W(¹³C,5nγ) 1986Hu02

¹⁸⁶W(¹³C,5nγ) 1986Hu02

¹⁹⁴₈₀Hg₁₁₄

¹⁹⁴₈₀Hg₁₁₄