¹⁹⁸At α decay (1.25 s) 2019Gh11,1992Hu04,2005Uu02

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Jun Chen and Balraj Singh	NDS 177, 1 (2021)	3-Sep-2021		

Parent: ¹⁹⁸At: E=265 3; $J^{\pi}=(10^{-})$; $T_{1/2}=1.25$ s 6; $Q(\alpha)=6889.4$ 19; % α decay=93 7

¹⁹⁸At-E: Deduced by 2019Gh11 from α -decay data in their work. Other: 287 *12* deduced by 2013St25 from analysis of measured mass excesses and linkage through α -decay chains.

¹⁹⁸At-J^{π}: From ¹⁹⁸At Adopted Levels in the ENSDF database (Dec 2015 update).

¹⁹⁸At-T_{1/2}: weighted average of 1.28 s *10* (2019Gh11), 1.24 s *6* (2014Ka23), 1.04 s *15* (2005Uu02), 1.3 s +8-3 (1996En01), 1.0 s 2 (1992Hu04), and 1.5 s 3 (1967Tr06). Half-life of 1.21 s *6* in ¹⁹⁸At Adopted Levels in the ENSDF database (Dec 2015 update)

is revised here with the inclusion of 2019Gh11 measurement.

¹⁹⁸At-Q(α): From 2021Wa16.

¹⁹⁸At-%α decay: From %α≥86 (1995BiZZ). Others: %α=76 21 (1998Bo14), >67 (1992Hu04), 26 7 (1980Ew03).

2019Gh11: ¹⁹⁸At from α decay of ²⁰²Fr, which was produced in U(p,X),E=1.4 GeV at ISOLDE-CERN facility using UC_x target and pulsed proton beam. Francium atoms were ionized and accelerated to 30 keV, followed by mass separation using High-Resolution separator (HRS). Measured E α , I α , $\alpha\gamma$ -coin using Si surface barrier detectors for α particles and two single-crystal HPGe detectors for γ detection. FWHM \approx 33 keV for E α =5-8 MeV range. The two activities of ²⁰²Fr could not be separated in this work.

1992Hu04: online mass-separated source from ²⁰²Fr α decay produced in Ir(²⁰Ne,xn)²⁰²Fr and ¹⁸¹Ta(³²S,2p9n)²⁰²Fr, and directly in Re(²⁰Ne,xn)¹⁹⁸At. Measured α particles, γ rays, conversion electrons, $\alpha\gamma(t)$ coin using Ge and Si(Li) detectors.

2005Uu02, 2005Uu03: ¹⁹⁸At produced in α decay of ²⁰²Fr produced in ¹⁴¹Pr(⁶³Cu,pn),E=278-288 MeV and in ¹⁷⁰Yb(³⁶Ar,p3n), E=180-185 MeV.

2014Ka23: ¹⁹⁸At source from ²⁰²Fr α decay, which was produced in ¹⁴⁹Sm(⁵⁶Fe,p2n), E(⁵⁶Fe)=244-275 MeV reaction, with beam from GSI accelerator facility. Target=370 μ g/cm² thick enriched to 96.9% in ¹⁴⁹Sm, and backed with 40 μ g/cm² thick carbon backing and covered with a 10 μ g/cm² layer of carbon. It was mounted on a rotating wheel. Evaporation residues were separated using SHIP facility at GSI, and implanted into the detection system consisting of 16-strip position sensitive Si detectors (PSSD), a pack of six Si strip detectors (BOX) at the back to detect escaping α particles, and three time-of-flight detectors in front of PSSDs. Measured position and time correlations between evaporation residues (Er) and α events, E α , half-lives of ground states and isomers of ²⁰²Fr and ¹⁹⁸At, Er- α - α correlations. Comparison with previous experimental results. (ER) $\alpha\alpha$ correlated events were assigned to ²⁰²Fr -> ¹⁹⁸At -> ¹⁹⁴Bi decay chain.

Others:

1998Bo14: measured α -decay branching ratios.

1996En01: online mass separated (gas-filled recoil separator) source from 202 Fr α decay produced in 170 Yb(35 Cl,3n), E=171-186 MeV. Measured α particles using semiconductor detector.

1988Wo11: measured α anisotropy.

1967Tr06: measured $E\alpha$, $T_{1/2}$.

¹⁹⁴Bi Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
161 8 265.5 2 686.4 2 699.2 4	(10 ⁻) (9 ⁻) (11 ⁻) (10 ⁻)	E(level): deduced by 2019Gh11 from α -decay data in their work. Other: 184 <i>I</i> 2 in 2013St25.

[†] From E γ values, keeping energy of the 161 level as fixed without its uncertainty. Absolute uncertainty in each level energy is 8 keV, same as in the 161-keV level.

[‡] From the Adopted Levels.

¹⁹⁸At α decay (1.25 s) 2019Gh11,1992Hu04,2005Uu02 (continued)

α radiations

$E\alpha^{\dagger}$	E(level)	$I\alpha^{\dagger \#}$	HF [‡]	Comments
6322 12	699.2	0.005 3	3.3×10 ² 20	Reduced α width $\delta_{\alpha}^2 = 0.2 l$ (2019Gh11).
6338 8	686.4	0.11 2	17 4	$I\alpha$: 0.09 to 0.13 in 2019Gh11.
				Reduced α width $\delta_{\alpha}^2 = 3.3$ to 4.8 (2019Gh11).
6753 8	265.5	0.19 14	4.0×10 ² 30	$I\alpha$: 0.05 to 0.34 in 2019Gh11.
				Reduced α width $\delta_{\alpha}^2 = 0.04$ to 0.28 (2019Gh11).
6852 4	161	99.70 <i>14</i>	1.8 2	E α : weighted average of 6849 5 (2014Ka23), 6850 6 (2005Uu02), 6855 4
				(1996En01), 6856 4 (1992Hu04), 6853 10 (1980Ew03) and 6847 5 (1967Tr06).
				Other: 6856 (1995BiZZ).
				I α : Relative I α =100 (2019Gh11).
				Reduced α width $\delta_{\alpha}^2 = 26$ keV <i>l</i> (2019Gh11), 39 keV <i>3</i> (2014Ka23).

[†] From 2019Gh11, unless otherwise stated. [‡] The nuclear radius parameter $r_0(^{194}Bi)=1.5187$ 42 (2020Si16) deduced from interpolation (or unweighted average) of radius parameters of the adjacent even-even nuclides, as given in 2020Si16: ¹⁹²Pb, ¹⁹⁴Pb, ¹⁹⁴Po, and ¹⁹⁶Po.

[#] For absolute intensity per 100 decays, multiply by 0.93 7.

$\gamma(^{194}\text{Bi})$

Intensities from $\alpha\gamma$ -coin data are given under comments, and are relative to 100 for I(6358 α -218.2 γ -coin) in the decay of (3⁺) g.s. of ²¹⁸At (2019Gh11).

E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π	Mult.	α #	Comments
104.5 2	265.5	(9 ⁻)	161	(10 ⁻)	M1+E2	7.3 17	I(6753 α -104.5 γ -coin)=21 3. Mult.: from the Adopted Gammas.
^x 258.8 [‡] 1							$I(6338\alpha - 258.8\gamma - coin) = 24 4.$
^x 336.3 [‡] 5							$I(6338\alpha - 336.3\gamma - coin) = 15 3.$
^x 363.6 [‡] 2							$I(6338\alpha - 363.6\gamma - coin) = 12 3.$
525.4 2	686.4	(11^{-})	161	(10 ⁻)	M1	0.1024	$I(6338\alpha - 525.4\gamma - coin) = 5 2.$
538.3 4	699.2	(10 ⁻)	161	(10 ⁻)			Mult.: from the Adopted Gammas. I(6322α - 538.4γ -coin)=2.8 <i>14</i> .

[†] From 2019Gh11.

[‡] Unplaced γ observed in coincidence with 6338 α from the decay of (10⁻) isomer of ¹⁹⁸At (2019Gh11).

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

¹⁹⁸At α decay (1.25 s) 2019Gh11,1992Hu04,2005Uu02

Decay Scheme

¹⁹⁴₈₃Bi₁₁₁