Adopted Levels, Gammas

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen and Balraj Singh	NDS 177, 1 (2021)	3-Sep-2021

 $Q(\beta^{-}) = -28 4$; S(n) = 6878 9; S(p) = 5021.2 25; $Q(\alpha) = 2116.7 25$ 2021Wa16

S(2n)=15582 16, S(2p)=11954.3 24, Q(ε)=2548.2 21 (2021Wa16).

Hyperfine structure and isotope-shift measurements: 1990Sa21, 1994Pa37.

Mass measurement: 2010El11, 1985De40.

Other measurements:

 181 Ta(13 C,X) E=65, 84 MeV; 181 Ta(12 C,X) E=75 MeV: GDR parameters in 194 Au: 2004Ma14. (HI,X): 1986Su08; 197 Au(14 N, 17 N), 3-neutron transfer reaction.

Additional information 1.

Theoretical references: consult the NSR database (www.nndc.bnl.gov/nsr/) for 21 primary references dealing with nuclear structure calculations.

¹⁹⁴Au Levels

Band and sequence assignments are from $(^{7}\text{Li},5n\gamma)$ (2012Ga46).

Cross Reference (XREF) Flags

			A B C D	¹⁹⁴ Hg ε decay (447 y) E ¹⁹³ Ir(α ,3n γ) ¹⁹⁴ Au IT decay (600 ms) F ¹⁹⁴ Pt(p,n γ) ¹⁹⁴ Au IT decay (420 ms) G ¹⁹⁵ Pt(p,2n γ) ¹⁹² Os(⁷ Li,5n γ)
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0	1-	38.02 h 10	ABC EFG	$%ε+%β^+=100$ μ=+0.0763 <i>I3</i> (1994Pa37,2019StZV) Q=-0.240 9 (1994Pa37,2016St14) β ₂ =0.121 (1994Pa37,1990Sa21) J ^π : spin from atomic-beam method (1960Ew06); parity from systematics of neighboring nuclides (¹⁹⁰ Au and ¹⁹² Au both have g.s. J ^π =1 ⁻). Small value of μ=0.076 is consistent with probable configuration=((π d _{3/2})(ν p _{1/2})). T _{1/2} : from 1992Si02 (γ-decay curve, with reference to ¹³⁷ Cs half-life, which was counted at the same time). Others: 39.23 h <i>51</i> (2019Ja03, from γ decay curve, average of 38.47 h +79-76 and 39.61 h <i>39</i> from sources made in two different reactions, uncertainties are statistical only); 39.5 h 5 (1949Wi08, β decay curve), 39 h 2 (1949St17). Unweighted average of all values is 38.9 h 3. μ: from resonance ionization mass spectroscopy with collinear fast-beam laser spectroscopy (1994Pa37). Other values: +0.079 3, resonance ionization mass spectroscopy (1990Sa21); 0.080 24, atomic beam magnetic resonance (1980Ek04); 0.074 4, atomic beam magnetic resonance (1965Ch08, 1962Ch18). 2020Ba17 give 0.0754 25 from re-analysis of data in 1994Pa37. Q: from collinear fast-beam laser spectroscopy (1994Pa37). Evaluated <r<sup>2>^{1/2}=5.4252 fm 40 (2013An02). Evaluated Δ<r<sup>2>(¹⁹⁴Au, ¹⁹⁷Au)=-0.131 fm² 1 (2013An02). Others: -0.1289 fm² 21 (1994Pa37)0 130 fm² 4 (1990Sa21)</r<sup></r<sup>
35.22 7	$(2)^{-}$		BC EFG	J^{π} : see comment on J^{π} for 80.5 level.
80.51 10	(3)-		BC EFG	J ^{π} : 45.29 γ (M1+E2)-35.22 γ (M1+E2) cascade to 1 ⁻ g.s., absence of direct transition to 1 ⁻ g.s., and $\gamma(\theta)$ in $(\alpha, 3n\gamma)$ favor (3) ⁻ for this level and (2) ⁻ for 35.2 level.
107.4 [°] 5	(5 ⁺)	600 ms 8	BCDEFG	%IT=100 J^{π} : 26.9 γ (M2) transition to (3) ⁻ and syst (similar 5 ⁺ isomers are reported in

Continued on next page (footnotes at end of table)

¹⁹⁴Au Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
				¹⁹² Au and ¹⁹⁸ Au). Since (E3) assignment for 26.9γ is not ruled out, 6^+ is also possible. In that case the spins of the levels based on this isomer will increase by one.
				$T_{1/2}$: from $\gamma(t)$ and pulsed beam in ¹⁹⁴ Au IT decay (1975Ya14). Other: 600 ms
244 5 ^C 6	(7^{+})	26 ns 2	CDEEC	50 (1982Ne05). I ^{π} : 137 08 $_{2}$ E2 Δ I=2 to (5 ⁺): hand assignment
244.5 0	(T)	2.0 118 2	CDEFG	$T_{1/2}$: from $\gamma(t)$ in ¹⁹⁴ Au IT decay (420 ms) (1977Pa20).
278.2 ^b 6	(6 ⁺)	1.1 ns 4	CDEFG	J^{π} : 170.78 γ M1+E2 γ to (5 ⁺); band assignment.
····b··		/		$T_{1/2}$: from γ (t) in ¹⁹⁴ Au IT decay (420 ms) (1977Pa20).
406.7 <mark>0</mark> 6	(8+)	2.9 ns 4	CDEFG	J^{π} : 128.5 γ E2, $\Delta J=2$ to (6 ⁺).
439.3 6	(9 ⁺)		EFG	$J_{1/2}^{\pi}$: 194.85 γ (E2), $\Delta J=2$ to (7 ⁺).
475.7 [@] 6	(11 ⁻)	420 ms 10	CDEFG	%IT=100
				J^{π} : 69.0 γ (E3) transition to (8 ⁺). Similar 11 ⁻ isomers with $T_{1/2}$ =160 ms and 125
				ms reported in ¹⁹² Au and ¹⁹⁰ Au, respectively (197/Pa20). Also probable shell-model configuration. Since (M2) assignment to 69.0γ cannot be ruled out, 10^{-1} is also possible. In that area the gains of the layely based on this isomer will
				decrease by one.
				$T_{1/2}$: from γ (t) and pulsed beam (1975Ya14). Others: 420 ms 20 (1982Ne05), 400 ms 20 (1953He57).
535.6 6	(9 ⁺)		EFG	J^{π} : 291.13 γ (E2), ΔJ =2 to (7 ⁺).
608.9° 6	(9 ⁺)		DEFG	J^{π} : 364.62 γ (E2), $\Delta J=2$ to (7 ⁺), 202.2 γ D to (8 ⁺).
618.6" 0 685.7 6	(12) (10^+)		DE E	$J^{\alpha}: 142.9\gamma$ D, $\Delta J=1$ to (11); band assignment. $J^{\pi}: 279.0\nu$ (E2), $\Delta J=2$ to (8 ⁺).
720.3 6	(9)		DEFG	$J^{\pi}: 313.4\gamma \text{ D}, \Delta J=1 \text{ to } (8^+).$
768.3 7	(10^{+})		E	J^{π} : 232.7 γ D, ΔJ =1 to (9 ⁺).
840.3 ^w 7	(13 ⁻)		DE	J^{π} : 364.5 γ (E2), ΔJ =2 to (11 ⁻), 221.7 γ D, ΔJ =1 to (12 ⁻).
888.0° 6	(10^{+})		DE	$J^{*}: 481.1\gamma Q, \Delta J=2$ to (8^{+}) .
1033.5" / 1154.1 [°] 6	(14) (11^+)		DE	J^{-1} : 414.4 γ Q, $\Delta J=2$ to (12), 195.0 γ D, $\Delta J=1$ to (15); band assignment.
1257.1 7	(10,11)		D	J^{π} : γ to (9).
1284.9 ^d 7	(14 ⁻)		DE	
1482.3 ^b 6	(12^{+})		D	
1525.5 [@] 7	(15 ⁻)		DE	
1748.7 [#] 7	(16 ⁻)		DE	
1780.9 ^{<i>a</i>} 9	(16^{-})		D	
2084.1 7	(13^{+}) (14^{+})		DE	
2085.4 ^b 7	(14^+)		D	
2091.7 <mark>&</mark> 7	(15 ⁺)		DE	
2185.1 ^{&} 7	(16 ⁺)		DE	
2236.2 ^{&} 7	(17^{+})		D	
2301.2 [@] 7	(17 ⁻)		D	J^{π} : 776.0 γ to (15 ⁻).
2334.3 ^d 11			D	
2431.6 ^{&} 7	(19 ⁺)		D	
2521.7 [#] 7	(18^{-})		D	
2585.2 8 2699 1 ^a 8	(19') (20^+)		ע	
$2765.2^{\#}$ 7	(20^{-})		D	
2947.6 [#] 8	(22^{-})		D	

¹⁹⁴Au Levels (continued)

E(level) [†]	J ^π ‡	XREF
2980.2 [@] 9	(19 ⁻)	D
3173.5 ^a 9	(22^{+})	D
3335.1 ^a 9	(22^{+})	D
3416.5 <mark>#</mark> 9	(24 ⁻)	D
3655.9 ^a 11		D
4216.3 [#] 10	(26 ⁻)	D

[†] From a least-squares fit to γ -ray energies.

[‡] For levels above 1033 keV, the assignments are based on $\gamma(\theta)$ data in $(\alpha, 3n\gamma)$ and $\gamma\gamma(\theta)(ADO)$ in $(^7Li, 5n\gamma)$, and sequences of levels connected by γ cascades, with the assumption that spins generally ascend with the excitation energy in the (HI,xn γ) type of reactions.

Seq.(A): Band 1 based on 12⁻. Configuration= $\pi h_{11/2}^{-1} \otimes v i_{13/2}^{-1}$, $\alpha = 0$; $\pi h_{11/2}^{-1} \otimes v i_{13/2}^{-3}$ above band crossing.

^(e) Seq.(a): Sequence 2 based on 11⁻. Configuration= $\pi h_{11/2}^{-1} \otimes \nu i_{13/2}^{-1}$, $\alpha = 1$. See signature partner.

& Seq.(B): Sequence 3 based on 15⁺. Configuration= $\pi h_{11/2}^{-1} \otimes v i_{13/2}^{-2} v(p_{3/2}/f_{5/2})$.

^{*a*} Seq.(C): Structure based on 20⁺. Configuration= $\pi h_{11/2}^{-1} \otimes v i_{13/2}^{-2} v h_{9/2}^{-1}$.

^b Seq.(D): Sequence 4 based on 6⁺. Configuration= $\pi d_{3/2}^{-1} \otimes \nu i_{13/2}^{-1}$, $\alpha = 0$.

^c Seq.(d): Sequence 5 based on 5⁺. Configuration= $\pi d_{3/2}^{-1} \otimes v i_{1/3/2}^{-1}$, $\alpha = 1$.

^d Seq.(E): Sequence 6 based on (14⁻). Possible configuration= $\pi h_{11/2}^{-1} \otimes v i_{13/2}^{-1}$.

3

						A	dopted Level	s, Gammas (cont	inuea)
								$\gamma(^{194}\text{Au})$	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ	α [@]	Comments
35.22	(2)-	35.22 7	100	0.0	1-	M1+E2	0.14 4	41 9	α(L)=31 7; α(M)=7.5 16
									α (N)=1.8 4; α (O)=0.32 7; α (P)=0.0151 3
									E_{γ} , Mult., δ : from ¹⁹⁴ Au II decay (600 ms), with mult and δ from
80.51	$(3)^{-}$	45.29 7	100	35.22	$(2)^{-}$	M1+E2	0.144 30	17.0 18	$\alpha(L)=13.0 \ 13; \ \alpha(M)=3.1 \ 4$
									$\alpha(N)=0.77$ 9; $\alpha(O)=0.137$ 14; $\alpha(P)=0.00715$ 12
									E_{γ} ,Mult., δ : from ¹⁹⁴ Au IT decay (600 ms), with mult and δ from ce data.
107.4	(5^{+})	26.9 5	100	80.51	(3)-	(M2)		7.5×10^3 7	$B(M2)(W.u.) = 1.46 \times 10^{-5} + 21 - 18$
									$\alpha(L) = 5.5 \times 10^{3} 6; \ \alpha(M) = 1.50 \times 10^{3} 14$
									$\alpha(N)=3.8\times10^2 4$; $\alpha(O)=677$; $\alpha(P)=3.33$
244 5	(7^{+})	137 08 10	100	107 4	(5^{+})	E2		1 473	E_{γ} , Mult.: from ce data in $(3, 4u)$ fi decay (1977Pa20). B(E2)(W II)=27.3 +23-20
211.5	(,)	157.00 10	100	107.1	(5)	112		1.175	$\alpha(K)=0.407\ 6;\ \alpha(L)=0.800\ 12;\ \alpha(M)=0.207\ 3$
									α (N)=0.0510 8; α (O)=0.00823 12; α (P)=4.32×10 ⁻⁵ 6
									E_{γ} : weighted average of 137.17 <i>10</i> from ¹⁹⁴ Au IT decay (420 ms),
									137.0 <i>I</i> from (⁷ Li,5n γ), and 137.0 <i>3</i> from (α ,3n γ).
									Mult.: from ce data in ¹⁹⁴ Au IT decay (420 ms) and $\gamma(\theta)$ in $(\alpha, 3n\gamma)$
278.2	(6^{+})	(33.6)	2.2 4	244.5	(7^{+})	[M1]			B(M1)(W.u.)=0.0034 14
	. ,	× ,			. ,				E_{γ} : from level-energy difference.
									I_{γ} : deduced from intensity balance in ¹⁹⁴ Au IT decay (420 ms).
		170.78 10	100 6	107.4	(5^+)	M1+E2	$-0.6\ 2$	1.34 12	B(M1)(W.u.)=0.0013 +7-4; B(E2)(W.u.)=6.0 +48-30
									$\alpha(\mathbf{N})=1.02\ 14;\ \alpha(\mathbf{L})=0.239\ 12;\ \alpha(\mathbf{M})=0.038\ 4$ $\alpha(\mathbf{N})=0.0143\ 9;\ \alpha(\mathbf{O})=0.00252\ 11;\ \alpha(\mathbf{P})=0.000121\ 17$
									E_{α} : weighted average of 170.78 10 from ¹⁹⁴ Au IT decay (420 ms).
									170.8 <i>I</i> from (⁷ Li,5n γ), and 170.6 <i>3</i> from (α ,3n γ).
									I_{γ} : from ¹⁹⁴ Au IT decay (420 ms).
									Mult., δ : from ce data in ¹⁹⁴ Au IT decay (420 ms) (1977Pa20), with
106 7	(0^{+})	128 40 10	100 6	278.2	(C^{+})	EO		1.90	sign of δ from $\gamma(\theta)$ in 1977Pa20.
400.7	(8)	128.49 10	100 0	278.2	(0.)	E2		1.89	B(E2)(W.u.)=22.9+30-29 $\alpha(K)=0.462.7; \alpha(L)=1.072.16; \alpha(M)=0.278.4$
									$\alpha(\mathbf{N})=0.0684 \ 10; \ \alpha(\mathbf{O})=0.01102 \ 16; \ \alpha(\mathbf{P})=5.05\times10^{-5} \ 8$
									$E_{\rm v}$: weighted average of 128.57 <i>10</i> from ¹⁹⁴ Au IT decay (420 ms),
									128.4 <i>I</i> from (⁷ Li,5n γ), and 128.6 <i>3</i> from (α ,3n γ).
									I_{γ} : from (⁷ Li,5n γ) and (α ,3n γ). Others: 100 50 from (p,n γ), and
									100 <i>16</i> from (p,2n γ); 100 from ¹⁹⁴ Au IT decay (420 ms).
		162.26 10	36.6 19	244.5	(7^{+})	M1+E2	-1.6 3	1.08 10	$B(M1)(W.u.)=5.0\times10^{-5}+20-12; B(E2)(W.u.)=1.87 36$
									$\alpha(\mathbf{N}) = 0.02 \ 12; \ \alpha(\mathbf{L}) = 0.342 \ 13; \ \alpha(\mathbf{M}) = 0.087 \ 4$ $\alpha(\mathbf{N}) = 0.0214 \ 10; \ \alpha(\mathbf{O}) = 0.00355 \ 12; \ \alpha(\mathbf{D}) = 7.1\times10^{-5} \ 14$
									$a_{(11)} = 0.0214$ 10, $a_{(0)} = 0.00333$ 13; $a_{(12)} = 7.1\times10^{-5}$ 14 F_{ac} weighted average of 162 22 12 from ¹⁹⁴ Au IT decay (420 ms)
									= 102.22 12 from 102.22 (420 ms),

4

From ENSDF

L

					A	dopted Levels,	, Gammas (continued)				
	γ ⁽¹⁹⁴ Au) (continued)										
E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	α [@]	Comments				
							 162.3 <i>I</i> from (⁷Li,5nγ), and 162.2 <i>3</i> from (α,3nγ). I_γ: weighted average of 37.0 <i>30</i> from ¹⁹⁴Au IT decay (420 ms), 35.0 <i>21</i> from (⁷Li,5nγ), 37.8 <i>19</i> from (α,3nγ), and 36 <i>4</i> from (p,2nγ). Mult.,δ: from ce data in ¹⁹⁴Au IT decay (420 ms) (1977Pa20), with sign of δ from γ(θ) in 1977Pa20. 				
439.3 475.7	(9 ⁺) (11 ⁻)	194.85 <i>12</i> 69.0 <i>3</i>	100 100	244.5 (7 ⁺) 406.7 (8 ⁺)	(E2) [#] (E3)	1.06×10 ³ 3	E _γ : weighted average of 195.0 <i>3</i> from (<i>α</i> ,3nγ) and 194.83 <i>12</i> from (p,2nγ). B(E3)(W.u.)=0.164 <i>8</i> α (L)=773 <i>23</i> ; α (M)=224 <i>7</i> α (N)=56.2 <i>17</i> ; α (O)=8.8 <i>3</i> ; α (P)=0.0124 <i>4</i> E _γ : from (<i>α</i> ,3nγ). Others: 69.0 <i>7</i> from ¹⁹⁴ Au IT decay (420 ms) and 69.0 <i>7</i> from (p,2nγ).				
							E_{γ} : from ce data in (α ,3n γ). Other: 69.0 7 from ce data in ¹⁹⁴ Au IT decay (420 ms).				
535.6 608.9	(9 ⁺) (9 ⁺)	291.13 <i>15</i> 202.2 <i>4</i>	100 27 <i>14</i>	244.5 (7 ⁺) 406.7 (8 ⁺)	(E2) [#] D		For the form that $(\alpha, \beta_1 \gamma)$ and $(\alpha, \beta_1 \gamma)$ and $(\alpha, \beta_1 \gamma)$ and $(\alpha, \beta_1 \gamma)$ and $(\alpha, \beta_1 \gamma)$. E _{γ} : weighted average of 291.3 <i>3</i> from ($\alpha, \beta_1 \gamma$) and 291.09 <i>15</i> from ($p, 2n\gamma$). E _{γ} : weighted average of 201.8 <i>3</i> from ($^7Li, 5n\gamma$) and 202.5 <i>3</i> from ($\alpha, \beta_1 \gamma$). I _{γ} : from ($\alpha, \beta_1 \gamma$). Other: <14 from ($^7Li, 5n\gamma$). Mult.: from $\gamma(\theta)$ in ($\alpha, \beta_1 \gamma$).				
		364.62 18	100 14	244.5 (7 ⁺)	(E2) [#]		E _{γ} : weighted average of 364.7 2 from (⁷ Li,5n γ), 364.8 5 from (α ,3n γ), and 364.54 <i>18</i> from (p,2n γ).				
618.6	(12 ⁻)	142.9 <i>1</i>	100	475.7 (11 ⁻)	D		E _{γ} : weighted average of 142.9 <i>I</i> from (⁷ Li,5n γ) and 143.0 <i>3</i> from (α ,3n γ). Mult.: from $\gamma(\theta)$ in (α ,3n γ).				
685.7	(10 ⁺)	279.0 3	100	406.7 (8+)	(E2) [#]		E_{γ} : from $(\alpha, 3n\gamma)$. in $(^{7}Li, 5n\gamma)$, a 279.3 γ is placed from 888, (10^{+}) to 609, (9^{+}) level, inconsistent with $\Lambda I=2$, quadrupole suggested by $\gamma(\theta)$ data in $(\alpha, 3n\gamma)$.				
720.3	(9)	313.4 2	100	406.7 (8 ⁺)	D		E_{γ} : weighted average of 313.6 2 from (⁷ Li,5n γ), 313.3 3 from (α ,3n γ), and 313.2 2 from (p,2n γ).				
768.3 840.3	(10 ⁺) (13 ⁻)	232.7 <i>3</i> 221.7 <i>1</i>	100 83 7	535.6 (9 ⁺) 618.6 (12 ⁻)	D D		Mult.: from $\gamma\gamma$ (ADO) (Δ J=1) in ('Li,5n γ), $\gamma(\theta)$ in (α ,3n γ) and (p,2n γ). E_{γ} ,Mult.: from (α ,3n γ), with mult from $\gamma(\theta)$. E_{γ} : from (⁷ Li,5n γ). Other: 221.7 5 from (α ,3n γ). I_{γ} : weighted average of 85 7 from (⁷ Li,5n γ) and 79 11 from (α ,3n γ). Mult.: from $\gamma\gamma$ (ADO) in (⁷ Li,5n γ), Δ J=1.				
		364.5 2	100 9	475.7 (11 ⁻)	(E2) [#]		E_{γ} : weighted average of 364.5 2 from (⁷ Li,5nγ) and 364.6 5 from (α ,3nγ). I_{γ} : from (⁷ Li,5nγ). Other: 100 15 from (α ,3nγ).				
888.0	(10 ⁺)	$167.3^{\dagger} 3$ 279.3 ^{\dagger} 2	27 [†] 7 <20.0 [†]	720.3 (9) 608.9 (9 ⁺)			-				
1033.3	(14 ⁻)	481.1 [†] 5 193.0 <i>1</i>	100 [†] <i>13</i> 100 5	406.7 (8 ⁺) 840.3 (13 ⁻)	Q D		E_{γ} : weighted average of 481.0 5 from (⁷ Li,5n γ) and 481.2 5 from (α ,3n γ). E_{γ} : from (⁷ Li,5n γ). Other: 193.0 3 from (α ,3n γ). L: from (⁷ Li,5n γ) Other: 100.25 from (α ,3n γ).				
		414.4 3	45 11	618.6 (12 ⁻)	Q		E_{γ} : weighted average of 414.3 3 from (⁷ Li,5n γ) and 414.5 3 from (α ,3n γ). I_{γ} : unweighted average of 55 5 from (⁷ Li,5n γ) and 34 7 from (α ,3n γ).				

S

 $^{194}_{79}\mathrm{Au}_{115}\text{--}5$

L

γ (¹⁹⁴Au) (continued)

E_i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	${ m J}_f^\pi$	Mult. [‡]	Comments
1154.1	(11^{+})	545.0 3	100	608.9	(9 ⁺)	Q	E_{γ} : weighted average of 544.9 5 from (⁷ Li,5n γ) and 545.0 3 from (α ,3n γ).
1257.1	(10,11)	536.9 [†] 6	100	720.3	(9)	-	
1284.9	(14 ⁻)	666.3 3	100	618.6	(12 ⁻)	Q	E_{γ} : weighted average of 666.5 3 from (⁷ Li,5n γ) and 666.1 3 from (α ,3n γ).
1482.3	(12^{+})	225.2 [†] 4	<14.3 [†]	1257.1	(10,11)		
		328.1 [†] 2	<43 [†]	1154.1	(11^{+})		
		594.8 [†] 5	100† 14	888.0	(10^{+})	Q	
1525.5	(15 ⁻)	492.6 <i>3</i>	83 6	1033.3	(14 ⁻)	D	E_{γ} : weighted average of 492.3 5 from (⁷ Li,5n γ) and 492.7 3 from (α ,3n γ).
		685.2 <i>3</i>	100 12	840.3	(13 ⁻)	Q	E_{γ} : weighted average of 685.4 3 from (⁷ Li,5n γ) and 625.0 3 from (α ,3n γ).
1748 7	(16^{-})	22223	25 1	1525 5	(15^{-})	D	I_{γ} : Itolii (* Li, 5117). Other: 100 76 from (α , 5117).
1/40./	(10)	223.3 3	25 4	1525.5	(15)	D	L_{γ} . weighted average of 24.4 from (⁷ L i 5ny) and 36.14 from (α 3ny).
		715.4.3	100.5	1033.3	(14^{-})	0	F_{α} : weighted average of 715.7.3 from (⁷ Li,5n γ) and 715.1.3 from (α ,3n γ).
					()	Č.	I_{γ} : from (⁷ Li,5n γ). Other: 100 27 from (α ,3n γ).
1780.9	(16 ⁻)	496.0 [†] 5	100	1284.9	(14^{-})	Q	
1848.7	(13 ⁺)	694.5 <i>3</i>	100	1154.1	(11^{+})	Q	E_{γ} : weighted average of 694.7 4 from (⁷ Li,5n γ) and 694.4 3 from (α ,3n γ).
2084.1	(14^{+})	1243.8 [†] <i>3</i>	100	840.3	(13 ⁻)	D	
2085.4	(14^{+})	236.6 [†] 3	<33 [†]	1848.7	(13^{+})		
		603.2 [†] 4	100 [†] 17	1482.3	(12^{+})	Q	
2091.7	(15 ⁺)	(7.6)		2084.1	(14^{+})	-	E_{γ} : from level-energy difference.
		343.0 2	24 5	1748.7	(16 ⁻)	D	E_{γ} : weighted average of 343.0 2 from (⁷ Li,5n γ) and 343.2 5 from (α ,3n γ). I _{γ} : from (⁷ Li,5n γ). Other: <36 from (α ,3n γ).
		566.3 [†] 6	18.4 [†] 26	1525.5	(15 ⁻)		·
		1058.3 2	100 8	1033.3	(14 ⁻)	D	E_{γ} : from (⁷ Li,5n γ). Other: 1058.3 <i>3</i> from (α ,3n γ). I _{γ} : from (⁷ Li,5n γ). Other: 100 <i>18</i> from (α ,3n γ).
2185.1	(16^{+})	93.4 [†] 2	$10.8^{\dagger} 27$	2091.7	(15^{+})		
		436.4 4	100 8	1748.7	(16 ⁻)	D	E_{γ} : weighted average of 436.3 4 from (⁷ Li,5n γ) and 436.5 5 from (α ,3n γ). I_{γ} : from (⁷ Li,5n γ).
			4				Mult.: D+Q from $\gamma(\theta)$ in $(\alpha, 3n\gamma)$; $\gamma\gamma(ADO)$ in $(^{1}Li, 5n\gamma)$ consistent with $\Delta J=0$ or 2.
2236.2	(17^{+})	50.9 7	100 29	2185.1	(16 ⁺)		
		487.2 [†] 5	100 29	1748.7	(16 ⁻)	D	
2301.2	(17-)	552.4 5	100 17	1748.7	(16 ⁻)		
		776.0 4	100 [†] 17	1525.5	(15 ⁻)		
2334.3		553.4 6	100	1780.9	(16 ⁻)		
2431.6	(19 ⁺)	195.4 2	100	2236.2	(17^{+})	Q	
2521.7	(18 ⁻)	220.6 [†] 3	<6.9	2301.2	(17 ⁻)		
		773.0 [†] 3	100 [†] 7	1748.7	(16 ⁻)	Q	
2585.2	(19+)	348.8 [†] 2	100	2236.2	(17 ⁺)	Q	
1							

6

$^{194}_{79}\mathrm{Au}_{115}\text{-}6$

From ENSDF

¹⁹⁴₇₉Au₁₁₅-6

	γ ⁽¹⁹⁴ Au) (continued)											
E _i (level)	\mathbf{J}_i^{π}	Eγ	Iγ	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.‡	E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.‡	
2699.1	(20 ⁺)	113.7 [†] 3	<11.1 [†]	2585.2 (19 ⁺)		3173.5	(22 ⁺)	474.4 [†] 5	100	2699.1 (20 ⁺)	Q	
		267.7†2	100 [†] 22	2431.6 (19 ⁺)	D	3335.1	(22^{+})	636.0 [†] 4	100	2699.1 (20 ⁺)	Q	
2765.2	(20^{-})	243.6 [†] 2	100 [†] 14	2521.7 (18 ⁻)	Q	3416.5	(24 ⁻)	468.9 [†] 5	100	2947.6 (22-)	Q	
		333.6 [†] 2	29 [†] 10	2431.6 (19 ⁺)		3655.9		482.4 [†] 6	100	3173.5 (22+)		
2947.6	(22 ⁻)	182.4 [†] 2	100	2765.2 (20 ⁻)	Q	4216.3	(26 ⁻)	799.8 [†] 5	100	3416.5 (24-)		
2980.2	(19 ⁻)	679.0 [†] 5	100	2301.2 (17 ⁻)								

[†] From (⁷Li, $5n\gamma$) only.

[±] From $\gamma(\theta)$ in $(\alpha, 3n\gamma)$ and/or $\gamma\gamma(ADO)$ in $(^{7}Li, 5n\gamma)$, with $\Delta J=2$ for Q and $\Delta J=1$ to D from $\gamma\gamma(ADO)$ where available, unless otherwise noted. [#] $\Delta J=2$, quadrupole from $\gamma(\theta)$ in $(\alpha, 3n\gamma)$, with further restriction that (E2) is assigned for $E\gamma<400$ keV, assuming level half-lives are less than few ns from observation of the γ rays in $\gamma\gamma$ -coin with a resolving time of few tens of ns.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

From ENSDF

¹⁹⁴₇₉Au₁₁₅

¹⁹⁴₇₉Au₁₁₅

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

Adopted Levels, Gammas

¹⁹⁴₇₉Au₁₁₅

