¹⁹⁵Pt(**p**,2**n**γ) **1977Pa20**

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Jun Chen and Balraj Singh	NDS 177, 1 (2021)	3-Sep-2021			

Also includes 194 Pt(d,2n γ) from 1975Ya14.

1977Pa20: E=12-20 MeV proton beams were produced from the 90-cm MC-20 cyclotron at University of Jyvaskyla. Target was 11 mg/cm² 97.3% enriched ¹⁹⁵Pt. γ rays were detected with Ge(Li) and HPGe detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma(\theta)$, $\gamma(t)$. Deduced levels, T_{1/2}. 1977Pa20 also measured conversion electrons from decays of ¹⁹⁴Au isomers using a cooled silicon surface-barrier detector and deduced conversion coefficients and γ -ray multipolarities. See ¹⁹⁴Au IT decay for more details. 1977Pa20 also report I γ data from ¹⁹⁴Pt(p,n γ).

Other reactions:

1975Ya14: ¹⁹⁴Pt(d,2n γ) E=11, 13, 15 MeV deuteron beams were produced from ANL accelerator. Natural Pt target. γ rays were detected with Ge detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma(t)$. Deduced levels, T_{1/2} from decay of the isomers. See ¹⁹⁴Au IT decay for more details.

All data are from 1977Pa20, unless otherwise noted.

¹⁹⁴Au Levels

A tentative level proposed by 1977Pa20 at 804 keV is discarded here as 1977Pa20 cited 1975La21 work for observing 365γ -194 γ coincidence, but 1975La21 assigned that coincidence in ¹⁹²Au, not ¹⁹⁴Au.

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
0.0	1-		
35.19 7	$(2)^{-}$		
80.51 10	$(3)^{-}$		
107.4 5	(5^{+})	600 ms 8	$T_{1/2}$: from $\gamma(t)$ and pulsed beam (1975Ya14).
244.6 6	(7^{+})	2.6 ns 2	
278.2 6	(6^{+})	1.1 ns 4	
406.8 6	(8^{+})	2.9 ns 4	
439.4 6	(9^{+})		
475.8 9	(11^{-})	420 ms 10	$T_{1/2}$: from $\gamma(t)$ and pulsed beam (1975Ya14).
535.7 6	(9 ⁺)		
609.1 6	(9^{+})		
720.0 6	(9)		

[†] From a least-squares fit to γ -ray energies.

[‡] From Adopted Levels.

[#] From $\gamma(t)$ in 1977Pa20, unless otherwise noted.

 $\gamma(^{194}Au)$

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.	Comments
(26.9 5)	< 0.3	107.4	(5 ⁺)	80.51 (3)-		E_{γ} : from ce data (1977Pa20). Mult.: from α(L)exp>2400 (1977Pa20).
(33.6)		278.2	(6^{+})	244.6 (7 ⁺)		E_{γ} : not seen in 1977Pa20; energy from level-energy difference.
35.19 7	31 5	35.19	$(2)^{-}$	0.0 1		
45.32 7	63 5	80.51	(3)-	35.19 (2)-		
(69.07)	<10	475.8	(11^{-})	406.8 (8 ⁺)	[E3]	E_{γ} : from ce data (1977Pa20).
^x 82.63 12	5.6 12					
^x 86.57 12	3.5 10					
^x 93.65 12	5.5 10					γ (t) gives 3.7 ns 7 (1977Pa20). A ₂ =+0.28 7.
x96.73 10	17 2					

Continued on next page (footnotes at end of table)

¹⁹⁵**Pt(p,2n** γ) **1977Pa20** (continued)

γ ⁽¹⁹⁴Au) (continued)</sup>

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$E_f J'_j$	$\frac{\pi}{f}$	Comments
x97.72 12	2.3 5					
^x 111.67 15	8.8 15					
^x 119.43 10	21 2					$A_2 = +0.26 2$
^x 127.9 2	16 4					2
128.58 10	25 4	406.8	(8^{+})	278.2 (6	+)	A ₂ ≈+0.08
^x 133.43 15	7.5 15					
137.16 10	100	244.6	(7^{+})	107.4 (5	+)	$A_2 = +0.15 2; A_4 = -0.07 3$
^x 138.87 12	8 2					
^x 144.31 15	2.0 6					
^x 145.39 15	2.9 6					
162.22 12	9.0 10	406.8	(8^{+})	$244.6 (7^{-1})$	+)	$A_2 = -0.35 7$
^x 166.55 [‡] 18	10.3 [‡] 15					
^x 169.22 10	56 5					
170.78 10	82 6	278.2	(6^{+})	107.4 (5	+)	$A_2 = -0.28 \ 4$
^x 172.27 15	22 6					
^x 177.29 <i>18</i>	72					
^x 183.59 12	7.2 10					
194.83 [‡] <i>12</i>	19.3 [‡] 16	439.4	(9^{+})	244.6 (7	+)	$A_2 = +0.285$
$x^{200.34}$ [#] 18	5.8 [#] 15					
×207 35# 15	≈9 [#]					
$x_{211} 52^{\#} 15$	10# 2					
211.32 13	10 5					
^x 219.32" 16	13" 3					
x220.76.78	5.1 12					
x223.9 2	3.8 12					
"223.1 2	4.5 15					
x239.4" 2	13" 2					
*245.36 10	12 2					
^x 287.06 ^m 18	≈25 ‴					
291.09 15	17 2	535.7	(9+)	244.6 (7	⁺)	$A_2 = +0.316; A_4 = +0.059$
×298.72 15	15.2					
x310.2 2	82					
~312.0 2	92	720.0	$\langle 0 \rangle$	406 0 (0-	+\	A 0.25 5. A 10.10 7
313.2 Z	8 Z 11 2	720.0	(9)	400.8 (8)	$A_2 = -0.55 3; A_4 = +0.10 7$
x320.15.18	82					
x338.64.16	24.3					
$x_{344} 02 18$	15.2					
x355.67.15	67.6					
364.54 18	12.3	609.1	(9^{+})	$244.6 (7^{-1})$	+)	$A_2 = +0.302; A_4 = -0.103$
×368 16 [#] 18	≈15 [#]		(-)		/	
x387 75 18	≈ 13					
x204 74# 18	10# 2					
394.74 10	12 3					
^{*403.5} ⁺ 4	12+ 4					
^x 418.6 [#] 3	15" 3					
^x 441.6 [#] 3	≈15 #					
^x 464.0 4	10 2					
×473.9 <i>3</i>	72					
^478.9 <i>4</i>	10 2					
^x 482.3 [#] 2	43 # 8					
^x 486.7 3	92					
*525.1 2	18 3					
^547.4 5	17 4					
^x 562.5 [#] 5	19 [#] 4					

Continued on next page (footnotes at end of table)

¹⁹⁵Pt(**p**,2**n**γ) **1977Pa20** (continued)

γ (¹⁹⁴Au) (continued)

[†] Relative intensity with respect to I(137 γ)=100, measured at θ =125° (1977Pa20).

[‡] Complex peak (1977Pa20).

[#] Complex peak, intensity corrected for contributions from other nuclides (1977Pa20).

 $x \gamma$ ray not placed in level scheme.

¹⁹⁴₇₉Au₁₁₅