¹⁹⁴Au IT decay (600 ms) 1977Pa20,1975Ya14

	Hist		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen and Balraj Singh	NDS 177, 1 (2021)	3-Sep-2021

Parent: ¹⁹⁴Au: E=107.4 5; $J^{\pi}=(5^+)$; $T_{1/2}=600$ ms 8; %IT decay=100.0

1977Pa20: isomers were produced via ¹⁹⁵Pt(p,2nγ) with 12-20 MeV protons from the internal slow-pulsing system of the 90-cm MC-20 cyclotron at University of Jyvaskyla on a target 11 mg/cm² 97.3% enriched ¹⁹⁵Pt. γ rays were detected with Ge(Li) and HPGe detectors; conversion electrons were detected with a cooled silicon surface-barrier detector. Measured Eγ, Iγ, γγ-coin, γ(t), γ(θ), E(ce), I(ce). Deduced levels, J, π, conversion coefficients, multipolarities. 1977Pa20 also report Iγ data from ¹⁹⁴Pt(p,nγ).
1975Ya14: isomers were produced via ¹⁹⁴Pt(d,2nγ) with 11, 13, 15 MeV deuterons and ¹⁹⁴Pt(p,nγ) with 11 MeV protons from

the ANL accelerator. Natural and enriched Pt targets. γ rays were detected with Ge detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma(t)$. Deduced levels, $T_{1/2}$ of isomers.

1982Ne05: isomers were produced via ¹⁹³Ir(α ,3n γ) with α beam from the Julich isochronous cyclotron JULIC on enriched ¹⁹³Ir target. Measured E γ , I γ , γ (t) with a Ge(Li) detector and measured conversion electrons with an iron-free on-line electron

spectrometer of the orange type in the off-beam slow pulsing mode. Deduced isomer $T_{1/2}$, J, π , γ -ray multipolarities. Others: 1980RoZN.

¹⁹⁴Au Levels

E(level) [†]	Jπ‡	T _{1/2}	Comments
0.0	1-		
35.22 7	$(2)^{-}$		
80.51 10	$(3)^{-}$		
107.4 5	(5 ⁺)	600 ms 8	$T_{1/2}$: from $\gamma(t)$ (1975Ya14). Other: 600 ms 50 (1982Ne05).

[†] From a least-squares fit to γ -ray energies.

[‡] From Adopted Levels.

 $\gamma(^{194}\text{Au})$

I γ normalization: From I(γ +ce)(45.29 γ)=100.

1980RoZN report γ rays at 10.9, 56.3 and 80.9, not seen by 1977Pa20, 1975Ya14 or 1982Ne05. These have been omitted.

E_{γ}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	E_f .	f^{π}	Mult. [†]	$\alpha^{\#}$	Comments
26.9 5	0.24 3	107.4	(5 ⁺)	80.51 (3	3)-	(M2)	7.5×10 ³ 7	$\begin{aligned} \alpha(L) = 5.5 \times 10^3 \ 6; \ \alpha(M) = 1.50 \times 10^3 \ 14 \\ \alpha(N) = 3.8 \times 10^2 \ 4; \ \alpha(O) = 67 \ 7; \ \alpha(P) = 3.3 \ 3 \\ \% I_{\gamma} = 0.0133 \ 21 \\ E_{\gamma}: \ from \ ce \ (dat \ in \ 1977Pa20). \\ I_{\gamma}: \ from \ ce(L)(26.9\gamma)/ce(L)(45.3\gamma) = 1.03 \ 13 \\ (1977Pa20) \ and \ mult = M2. \ Others: \ 0.24 \ 5 \ from \\ I(\gamma + ce) \ balance \ at \ 80 \ level, <0.5 \ from \ \gamma - ray \\ measurements \ (1977Pa20). \\ Mult: \ \alpha(L) exp > 2400 \ (1977Pa20) \ rules \ out \ mult = D, E2. \\ The \ intensity \ balance \ at \ 80.5 \ level \ restricts \\ multipolarity \ to \ M2, \ E3, \ M3 \ or \ M4. \ The \ upper \ limits \\ on \ B(EL)(W.u.) \ rule \ out \ M4. \ The \ M3 \ is \ less \ likely \\ since \ B(M3)(W.u.) = 9.1 \ is \ very \ close \ to \ RUL = 10 \ for \\ M3. \ The \ M2 \ assignment \ is \ chosen \ simply \ because \ of \\ preference \ of \ 5^+ \ for \ 107-keV \ isomer \ rather \ than \ 6^+. \ A \\ similar \ 5^+ \ isomer \ reported \ in \ ^{192}Au \ (1977Pa20). \end{aligned}$

¹⁹⁴Au IT decay (600 ms) **1977Pa20,1975Ya14** (continued)

$\gamma(1)$ (continued	Au) (continued)
------------------------	-----------------

Eγ	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	α #	Comments
35.22 7	42 4	35.22	(2)-	0.0 1-	M1+E2	0.14 4	41 9	$ \begin{array}{l} \alpha(\text{L})=31 \ 7; \ \alpha(\text{M})=7.5 \ 16 \\ \alpha(\text{N})=1.9 \ 4; \ \alpha(\text{O})=0.32 \ 7; \ \alpha(\text{P})=0.0151 \ 3 \\ \% \text{I}\gamma=2.3 \ 3 \\ \text{E}_{\gamma}: \text{ weighted average of } 35.19 \ 7 \ (1977\text{Pa20}) \\ \text{ and } 35.27 \ 8 \ (1975\text{Ya14}). \end{array} $
45.29 7	100	80.51	(3)-	35.22 (2)-	M1+E2	0.144 <i>30</i>	17.0 <i>18</i>	I _γ : from 1977Pa20. Other: 80 23 from 1975Ya14. Mult.,δ: from α (L)exp=32 5 (1977Pa20). α (L)=13.0 13; α (M)=3.1 4 α (N)=0.77 9; α (O)=0.137 14; α (P)=0.00715 12 %Iγ=5.6 6 E _γ : weighted average of 45.32 7 (1977Pa20) and 45.25 9 (1975Ya14). Mult.,δ: from α (L)exp=13.4 12 (1977Pa20).

[†] From ce data, normalized to ce(L) data for 128.6 γ from ¹⁹⁴Au IT decay (420 ms). The 128.6 γ treated as E2 with α (L)=1.08.

[‡] For absolute intensity per 100 decays, multiply by 0.0556 56.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁹⁴Au IT decay (600 ms) 1977Pa20,1975Ya14

