¹⁹²**Os**(⁷**Li**,**5** $n\gamma$) **2012Ga46**

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen and Balraj Singh	NDS 177, 1 (2021)	3-Sep-2021

2012Ga46: E=44 MeV ⁷Li beam was provided by the HI-13 tandem accelerator at the China Institute of Atomic Energy in Beijing (CIAE). Enriched target=1.7 mg/cm² ¹⁹²Os. Gamma rays detected by an array of 14 Compton-suppressed HPGe detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma$ (ADO). Deduced levels, J, π , bands, multipolarity, configurations. Comparison with total Routhian surface calculations.

Expected R_{ADO} values are >1.0 and <1.0 for stretched quadrupole ($\Delta J=2$, most likely E2) and dipole transitions ($\Delta J=1$, most likely E1 if pure or M1+E2 if an admixture), respectively.

¹⁹⁴Au Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments
107.4 ^d	(5 ⁺)	600 ms 8	Additional information 1. E(level): from Adopted Levels.
244.36 ^d 9	(7^{+})		
278.24 ^c 9	(6+)		
406.68 ^C 10	(8 ⁺)		
475.7 <mark>&</mark> 10	(11^{-})	420 ms 10	
608.80 ^d 17	(9 ⁺)		
618.6 [@] 10	(12 ⁻)		
720.37 20	(9 ⁺)		J^{π} : (9) in Adopted Levels.
840.2 ^{&} 11	(13 ⁻)		
887.90 [°] 21	(10^{+})		
1033.2 [@] 11	(14 ⁻)		
1154.2 ^d 4	(11^{+})		
1257.2 5	$(10^+, 11^+)$		J^{π} : (10,11) in Adopted Levels.
1285.1 ^e 11	(14 ⁻)		
1482.3° 4	(12)		
1525.4 ^{cc} 11	(15^{-})		
1748.8 ^w 11	(16^{-})		
1/81.1° 12	(16)		
1848.9 ⁴ 5	(13^+)		
2084.0 11 2085.5°	(14^{+}) (14^{+})		
$2085.5 \ 5$ $2091 \ 7^{a} \ 11$	(14^{-}) (15^{+})		
2185.1 ^{<i>a</i>} 11	(16^+)		
2236.3 ^a 11	(17 ⁺)		
2301.2 ^{&} 11	(17-)		
2334.5 ^e 14			
2431.6 ^{<i>a</i>} 11	(19 ⁺)		
2521.7 [@] 11	(18 ⁻)		
2585.2 11	(19 ⁺)		
2699.2 ⁰ 11	(20^{+})		
2765.3 [@] 11	(20 ⁻)		
2947.7 [@] 11	(22 ⁻)		
2980.2 ^{&} 12	(19 ⁻)		
3173.6 ^b 12	(22^{+})		
3335.2 ^b 12	(22^{+})		
3416.6 [@] 12	(24 ⁻)		

¹⁹²Os(⁷Li,5nγ) 2012Ga46 (continued)

¹⁹⁴Au Levels (continued)

 $\frac{\text{E(level)}^{\dagger}}{3656.0^{b} \ 14} \qquad \frac{\text{J}^{\pi \ddagger}}{4216.4^{@} \ 13} \qquad (26^{-})$

[†] From a least-squares fit γ -ray energies, unless otherwise noted.

[‡] Proposed by 2012Ga46, based on their angular distribution data (R_{ADO} values) and γ cascades arranged as sequences. All assignments have been placed inside parentheses by evaluators due to lack of firm evidence. The same assignments are adopted in Adopted Levels.

[#] From Adopted Levels.

^(a) Seq.(A): Sequence 1 based on (12⁻). Configuration= $\pi h_{11/2}^{-1} \otimes v i_{13/2}^{-1}$, $\alpha = 0$; $\pi h_{11/2}^{-1} \otimes v i_{13/2}^{-3}$ above band crossing.

& Seq.(a): Sequence 2 based on (11⁻). Configuration= $\pi h_{11/2}^{-1} \otimes \nu i_{13/2}^{-1}$, $\alpha = 1$. See signature partner.

^{*a*} Seq.(B): Sequence 3 based on (15⁺). Configuration= $\pi h_{11/2}^{-1} \otimes \nu l_{13/2}^{-2} \nu (p_{3/2}/f_{5/2})$.

^b Seq.(C): Structure based on (20⁺). Configuration= $\pi h_{11/2}^{-1} \otimes \nu i_{13/2}^{-2} \nu h_{9/2}^{-1}$.

^c Seq.(D): Sequence 4 based on (6⁺). Configuration= $\pi d_{3/2}^{-1} \otimes \nu i_{13/2}^{-1}$, $\alpha = 0$.

^d Seq.(d): Sequence 5 based on (5⁺). Configuration= $\pi d_{3/2}^{-1} \otimes \nu i_{13/2}^{-1}$, $\alpha = 1$.

^{*e*} Seq.(E): Sequence 6 based on (14⁻). Possible configuration= $\pi h_{11/2}^{-1} \otimes \nu i_{13/2}^{-1}$.

$\gamma(^{194}\mathrm{Au})$

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger\ddagger}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	Comments
(7.6)		2091.7	(15^{+})	2084.0	(14^{+})		
(33.9)		278.24	(6 ⁺)	244.36	(7 ⁺)		
50.9 7	72	2236.3	(17^{+})	2185.1	(16^{+})		
(69.0)		475.7	(11-)	406.68	(8+)	[E3]	
93.4 2	41	2185.1	(16^{+})	2091.7	(15^{+})		
113.7 3	<1	2699.2	(20^{+})	2585.2	(19 ⁺)		
128.4 <i>I</i>	143 9	406.68	(8 ⁺)	278.24	(6^+)		
137.0 <i>1</i>	96 6	244.36	(7^{+})	107.4	(5^{+})		
142.9 <i>1</i>	53 <i>3</i>	618.6	(12^{-})	475.7	(11 ⁻)		
162.3 <i>1</i>	50 <i>3</i>	406.68	(8^+)	244.36	(7^{+})		
167.3 <i>3</i>	4 1	887.90	(10^{+})	720.37	(9 ⁺)		
170.8 <i>1</i>	132 8	278.24	(6^{+})	107.4	(5^{+})		
182.4 2	16 2	2947.7	(22^{-})	2765.3	(20^{-})	Q	R _{ADO} =1.25 14.
193.0 <i>1</i>	76 4	1033.2	(14^{-})	840.2	(13 ⁻)	D	R _{ADO} =0.82 9.
195.4 2	28 2	2431.6	(19^{+})	2236.3	(17^{+})	Q	R _{ADO} =1.43 21.
201.8 3	<3	608.80	(9 ⁺)	406.68	(8^{+})		
220.6 3	<2	2521.7	(18^{-})	2301.2	(17 ⁻)		
221.7 I	85 7	840.2	(13-)	618.6	(12 ⁻)	D	R _{ADO} =0.77 8.
223.4 2	19 <i>3</i>	1748.8	(16 ⁻)	1525.4	(15 ⁻)	D	R _{ADO} =0.80 10.
225.2 4	<1	1482.3	(12^{+})	1257.2	$(10^+, 11^+)$		
236.6 3	<2	2085.5	(14^{+})	1848.9	(13 ⁺)		
243.6 2	21 3	2765.3	(20^{-})	2521.7	(18 ⁻)	Q	R _{ADO} =1.37 15.
267.7 2	92	2699.2	(20^{+})	2431.6	(19 ⁺)	D	R _{ADO} =0.96 14.
279.3 2	<3	887.90	(10^{+})	608.80	(9 ⁺)		
313.6 2	92	720.37	(9+)	406.68	(8^{+})	D	R _{ADO} =0.67 9.
328.1 2	<3	1482.3	(12^{+})	1154.2	(11^{+})		
333.6 2	62	2765.3	(20^{-})	2431.6	(19 ⁺)	D	R _{ADO} =0.66 8.
343.0 2	92	2091.7	(15^{+})	1748.8	(16 ⁻)	D	R _{ADO} =0.74 9.
348.8 2	61	2585.2	(19+)	2236.3	(17^{+})	Q	R _{ADO} =1.37 21.
364.5 2	100 9	840.2	(13 ⁻)	475.7	(11 ⁻)	Q	R _{ADO} =1.44 15.

Continued on next page (footnotes at end of table)

¹⁹²Os(⁷Li,5n γ) 2012Ga46 (continued)

γ (¹⁹⁴Au) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger\ddagger}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	Comments
364.7 2	21 3	608.80	(9 ⁺)	244.36	(7^{+})	Q	R _{ADO} =1.44 <i>16</i> .
414.3 <i>3</i>	42 4	1033.2	(14 ⁻)	618.6	(12^{-})	Q	$R_{ADO} = 1.44 \ 16.$
436.3 <i>4</i>	37 <i>3</i>	2185.1	(16 ⁺)	1748.8	(16 ⁻)	Ď	Mult.: $\Delta J=0$, dipole transition, consistent with
							R _{ADO} =1.56 <i>17</i> .
468.9 5	82	3416.6	(24 ⁻)	2947.7	(22^{-})	Q	R _{ADO} =1.62 <i>19</i> .
474.4 5	61	3173.6	(22^{+})	2699.2	(20^{+})	Q	R _{ADO} =1.45 16.
481.0 5	15 2	887.90	(10^{+})	406.68	(8^{+})	Q	R _{ADO} =1.38 16.
482.4 6	3 1	3656.0		3173.6	(22^{+})		
487.2 5	72	2236.3	(17^{+})	1748.8	(16 ⁻)	D	R _{ADO} =0.93 13.
492.3 5	29 2	1525.4	(15^{-})	1033.2	(14 ⁻)	D	R _{ADO} =0.84 9.
496.0 5	51	1781.1	(16 ⁻)	1285.1	(14 ⁻)	Q	R _{ADO} =1.54 21.
536.9 6	4 1	1257.2	$(10^+, 11^+)$	720.37	(9^+)		
544.9 <i>5</i>	10 2	1154.2	(11^{+})	608.80	(9+)	Q	R _{ADO} =1.51 17.
552.4 5	61	2301.2	(17^{-})	1748.8	(16 ⁻)		Mult.: $\Delta J=1$, dipole implied from ΔJ^{π} values is
							inconsistent with $R_{ADO} = 1.42 \ 20$.
553.4 6	<1	2334.5		1781.1	(16 ⁻)		
566.3 6	71	2091.7	(15^{+})	1525.4	(15^{-})		
594.8 <i>5</i>	71	1482.3	(12^{+})	887.90	(10^{+})	Q	$R_{ADO} = 1.42 \ I8.$
603.2 4	61	2085.5	(14^{+})	1482.3	(12^{+})	Q	R _{ADO} =1.24 14.
636.0 4	92	3335.2	(22^{+})	2699.2	(20^{+})	Q	R _{ADO} =1.49 <i>17</i> .
666.5 <i>3</i>	13 <i>1</i>	1285.1	(14 ⁻)	618.6	(12^{-})	Q	R _{ADO} =1.19 18.
679.0 5	<3	2980.2	(19 ⁻)	2301.2	(17^{-})	_	
685.4 3	35 4	1525.4	(15^{-})	840.2	(13^{-})	Q	$R_{ADO} = 1.52 \ I7.$
694.7 4	92	1848.9	(13^+)	1154.2	(11^{+})	Q	$R_{ADO} = 1.41 I / .$
715.7 3	80 4	1748.8	(16^{-})	1033.2	(14^{-})	Q	$R_{ADO} = 1.48 \ I5.$
773.0 3	29.2	2521.7	(18^{-})	1748.8	(16^{-})	Q	R _{ADO} =1.45 <i>16</i> .
7/6.0 4	61	2301.2	(17)	1525.4	(15^{-})		
/99.8 5	<3	4216.4	(26^{-})	3416.6	(24^{-})	D	D 0.07.0
1058.3 2	38 3	2091.7	(15')	1033.2	(14)	D	$R_{ADO} = 0.87 9$.
1243.8 <i>3</i>	92	2084.0	(14^{+})	840.2	(13^{-})	D	$R_{ADO} = 0.85 \ II.$

[†] From 2012Ga46. [‡] Additional information 2. [#] Multipolarities are not explicitly given by 2012Ga46, but implied by R_{ADO} value and their J^{π} assignments.

¹⁹⁴₇₉Au₁₁₅

¹⁹⁴₇₉Au₁₁₅

¹⁹⁴₇₉Au₁₁₅

¹⁹⁴₇₉Au₁₁₅