1996Bo02,1998Bo32,1999Kr19 $(HI,xn\gamma):SD$

	His	tory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia	NDS 143, 1 (2017)	31-Mar-2017

1990Fe07: 160 Gd(37 Cl,4n γ) E=167 MeV; measured γ , $\gamma\gamma$ and deduced SD-1 and SD-2 bands. 1990KeZW; 176 Yb(23 Na,6n γ); E=116, 122 MeV; HERA Compton-suppressed Ge detector array (20 detectors); identified a 12-transition SD band which was tentatively assigned to ¹⁹³Tl. Authors give no other details.

1996Bo02, 1996Bo15: ¹⁸¹Ta(¹⁸O,6n γ) E=110 MeV. Measured E γ , $\gamma\gamma\gamma$ with EUROGAM2 array (126 Compton-suppressed Ge detectors (24 quad-clover and 30 Ge detectors)). Deduced SD-1 and SD-2 bands and interband transitions linking the two signature partners.

1998Bo32, 1998Bo20 (also 1996WiZY): 181 Ta(18 O,6n γ) E=110 MeV. Measured E γ , 2- and 3-fold gated $\gamma\gamma$ coincidences with

EUROGAM2 array (54 Compton-suppressed Ge detectors (24 quad-clover and 30 Ge detectors)). Deduced SD-3, SD-4 and SD-5 bands. Deduced transitions connecting SD-1 and SD-2 bands to normal bands.

1999Kr19: ¹⁷⁶Yb(²³Na,6ny) E=129 MeV. GAMMASPHERE array of 100 Compton-suppressed HPGe detectors. Measured lifetimes by DSAM and deduced intrinsic quadrupole moments for SD-1 and SD-2 bands.

193Tl Levels

E(level)	\mathbf{J}^{π}	Comments
v^{\dagger}	(17/2 ⁺)	J^{π} : from 1998Bo20. Also from least-squares fits to $E\gamma'$ s using empirical expansions relating second moment of inertia and angular frequency.
98+v‡	$(19/2^+)$	J^{π} : calculated J=19/2 (1992Wu01,1993Hu06,1994Zh40).
206+v [†]	$(21/2^+)$	J^{π} : calculated J=21/2 (1992Wu01,1993Hu06,1994Zh40).
325+v [‡] 3	$(23/2^+)$	
454+v [†] 3	$(25/2^+)$	
593+v [‡] 3	$(27/2^+)$	
741+v [†] 3	$(29/2^+)$	
901+v [‡] 3	$(31/2^+)$	
1069+v† <i>3</i>	$(33/2^+)$	
1249+v [‡] <i>3</i>	$(35/2^+)$	
1435+v [†] 3	$(37/2^+)$	
1636+v [‡] <i>3</i>	$(39/2^+)$	
1840+v [†] 3	$(41/2^+)$	
2062+v [‡] 3	$(43/2^+)$	
2283+v [†] 3	$(45/2^+)$	
2525+v [‡] 3	$(47/2^+)$	
2763+v 3	$(49/2^+)$	
3027+v ⁴ 3	$(51/2^+)$	
3279+v [†] 3	$(53/2^+)$	
3564+v ⁺ 3	$(55/2^+)$	
3830+v [†] 3	$(57/2^+)$	
4137+v ⁺ 3	$(59/2^+)$	
4417+v [†] 3	$(61/2^+)$	
4746+v ⁺ 3	$(63/2^+)$	
$5037 + v^{\dagger} 3$	$(65/2^+)$	
$5390 + v^{+} 3$	$(6^{-}/2^{+})$	
5691+v ⁺ 3	$(69/2^{+})$	
$6069 + v^{+} 3$	$(71/2^{+})$	
03//+v' 3	(73/2)	

¹⁹³₈₁Tl₁₁₂-1

¹⁹³Tl Levels (continued)

E(level)	J^{π}	Comments
6782+v [‡] 3	$(75/2^+)$	
$7096 + v^{\dagger} 3$	$(77/2^+)$	
$7529 + v^{\ddagger} 3$	$(79/2^+)$	
$7847 + v^{\dagger} 3$	$(81/2^+)$	
$8311 + v^{\ddagger} 3$	$(83/2^+)$	
$8630 + v^{\dagger} 4$	$(85/2^+)$	
v#	J	J^{π} : $\approx (15/2)$.
187.9+y [#] 3	J+2	
418.6+y [#] 5	J+4	
691.4+y [#] 6	J+6	
1005.7+y [#] 6	J+8	
1360.7+y [#] 7	J+10	
1755.8+y [#] 8	J+12	
2190.3+y [#] 8	J+14	
2663.4+y [#] 9	J+16	
3174.0+y [#] 9	J+18	
3721.5+y [#] 10	J+20	
4304.9+y [#] 10	J+22	
4923.3+y [#] 11	J+24	
5576.4+y [#] 11	J+26	
6263.1+y [#] 12	J+28	
6977.1+y [#] 14	J+30	
7712.1+y [#] 17	J+32	
z	J1	J^{π} : $\approx (23/2)$.
250.8+z [@] 3	J1+2	
542.8+z [@] 5	J1+4	
875.5+z [@] 6	J1+6	
1248.2+z [@] 6	J1+8	
1660.1+z [@] 7	J1+10	
2110.6+z 8	J1+12	
2598.7+z 8	J1+14	
3123.9 + z = 9	J1+16	
$3085.0+Z^{\circ}$ 9	J1+18 J1+20	
$4282.3 \pm 2^{\circ} 10$	J1+20	
4914.3+2 10	J1+22	
5380.7 ± 2 11 $6285.4 \pm 2^{(0)}$ 13	J1+24 I1+26	
$70334 \pm 7^{(0)}$ 16	$J1 \pm 20$ $J1 \pm 28$	
1055.4+2 10	J1+20 J2	$I^{\pi} \cdot \sim (21/2)$
$2715 \pm 10^{\circ}$ 5	12+2	$J \cdot \sim (21/2).$
584 8+11 × 7	I2+4	
$938.9 + n^{\&} 7$	J2+6	
1332.2+u ^{&} 9	J2+8	
1764.5+u ^{&} 9	J2+10	
2234.4+u ^{&} 10	J2+12	

¹⁹³Tl Levels (continued)

E(level)	J^{π}	E(level)	J^{π}	E(level)	J^{π}
2741.7+u ^{&} 10	J2+14	3864.8+u ^{&} 11	J2+18	5128.8+u ^{&} 13	J2+22
3285.4+u ^{&} 10	J2+16	4479.3+u ^{&} 12	J2+20	5813.0+u ^{&} <i>13</i>	J2+24
				6531.8+u ^{&} 15	J2+26

[†] Band(A): SD-1 band α =+1/2. (1990Fe07,1996Bo02,1998Bo20,1999Kr19). Percent population is \approx 0.5 of total yield for ¹⁹³Tl (1990Fe07). Q(intrinsic)=18.3 *10* (1999Kr19). From competing M1 (interband) and E2 (intraband) transitions, g_K=1.46 *17* (1996Bo02) and g_s^{eff}/g_s^{free}=0.7 2 (1996Bo02).

[‡] Band(a): SD-2 band $\alpha = -1/2$. (1990Fe07,1996Bo02,1998Bo20,1999Kr19). percent population is ≈ 0.5 of total yield for ¹⁹³Tl (1990Fe07). Q(intrinsic)=17.4 *10* (1999Kr19). The two SD bands (SD Band 1 and SD Band 2) are interpreted as signature partners influenced by the i13/2 proton intruder orbital. From competing M1 (interband) and E2 (intraband) transitions, g_K=1.46 *17* (1996Bo02) and g_s^{eff}/g_s^{free}=0.7 *2* (1996Bo02).

[#] Band(B): SD-3 band. Population intensity=60% of SD-2 band. Interaction observed between SD-3 and SD-4 bands, and the identical energies (within 2 keV) of transitions in SD-3 and SD-5 bands, indicate involvement of 1/2[411], $\alpha = \pm 1/2$ and 1/2[651], $\alpha = -1/2$ proton orbitals. At high frequencies SD-3 is interpreted to be due to 1/2[651], $\alpha = -1/2$, while at low frequencies, it is expected to be due to 1/2[411] $\alpha = -1/2$ (1998Bo32).

^(a) Band(C): SD-4 band. Population intensity=33% of SD-2 band. At high frequencies SD-4 Interaction is observed between SD-3 and SD-4 bands. is interpreted to be due to 1/2[411], $\alpha = -1/2$, while at low frequencies it is interpreted as 1/2[651], $\alpha = -1/2$ (1998Bo32).

& Band(D): SD-5 band. Population intensity=16% of SD-2 band. Identical energies (within 2 keV) of transitions in SD-3 and SD-5 bands indicate that these bands may be signature partners. SD-5 band is interpreted as 1/2[411], $\alpha = +1/2$ (1998Bo32).

E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult.	Comments
108.0 3		206+v	$(21/2^+)$	98+v	$(19/2^+)$		
118.9 3		325+v	$(23/2^+)$	206+v	$(21/2^+)$		
128.3 <i>3</i>		454+v	$(25/2^+)$	325+v	$(23/2^+)$		
139.2 3		593+v	$(27/2^+)$	454+v	$(25/2^+)$	(M1)	Mult.: $\alpha(\exp)(139\gamma+148\gamma)=2.6 \ 8 \ (1996Bo02)$; theory: $\alpha(K)(M1)=2.73$.
148.2 <i>3</i>		741+v	(29/2+)	593+v	(27/2+)	(M1)	Mult.: $\alpha(\exp)(139\gamma+148\gamma)=2.6 \ 8 \ \text{and} \ \alpha(\exp)(148\gamma+160\gamma)=3.0 \ 8 \ (1996Bo02); \text{ theory:} \ \alpha(K)(M1)=2.29.$
160.1 3		901+v	$(31/2^+)$	741+v	(29/2 ⁺)	(M1)	Mult.: $\alpha(\exp)(148\gamma+160\gamma)=3.0 \ 8 \ (1996Bo02)$; theory: $\alpha(K)(M1)=1.84$.
167.4 <i>3</i>		1069+v	$(33/2^+)$	901+v	$(31/2^+)$	(M1)	Mult.: $\alpha(\exp)(167\gamma+181\gamma)=2.2\ 5\ (1996Bo02)$: theory: $\alpha(K)(M1)=1.622$.
180.6 <i>3</i>		1249+v	(35/2+)	1069+v	(33/2+)	(M1)	Mult.: $\alpha(\exp)(167\gamma+181\gamma)=2.25$ and $\alpha(\exp)(181\gamma+186\gamma)=1.87$ (1996Bo02); theory: $\alpha(K)(M1)=1.31$.
185.8 <i>3</i>		1435+v	(37/2 ⁺)	1249+v	(35/2+)	(M1)	Mult.: $\alpha(\exp)(181\gamma+186\gamma)=1.8\ 7$ and $\alpha(\exp)(186\gamma+201\gamma)=1.4\ 6\ (1996Bo02)$; theory: $\alpha(K)(M1)=1.21$.
187.9 <i>3</i>		187.9+y	J+2	у	J		
201.4 3		1636+v	(39/2+)	1435+v	$(37/2^+)$	(M1)	Mult.: $\alpha(\exp)(186\gamma+201\gamma)=1.4~6~(1996Bo02)$; theory: $\alpha(K)(M1)=0.965$.
203.5 3		1840+v	$(41/2^+)$	1636+v	$(39/2^+)$		
206.6 3		206+v	$(21/2^+)$	v	$(17/2^+)$		
221.5 3		2062+v	$(43/2^+)$	1840+v	$(41/2^+)$		
227.3 3	0.98 10	325+v	$(23/2^+)$	98+v	$(19/2^+)$		

$\gamma(^{193}\text{Tl})$

			(HI,x	nγ):SD	1996Bo02,1998Bo32,1999Kr19 (continued)
					γ ⁽¹⁹³ Tl) (continued)
E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^π	E_f	J_f^{π}
230.7 3		418.6+y	J+4	187.9+y	<u>J+2</u>
247.3 <i>3</i>	0.39 6	454+v	$(25/2^+)$	206+v	$(21/2^+)$
250.8 <i>3</i>	-	250.8+z	J1+2	Z	J1
267.9 <i>3</i>	1.13 [@] 23	593+v	$(27/2^+)$	325+v	$(23/2^+)$
271.5 5		271.5+u	J2+2	u	J2
272.8 3	0.45.5	691.4+y	J+6	418.6+y	J+4
287.7 3	0.45 5	741+v	(29/2 ')	454+v	$(25/2^+)$
292.0 5	0.86.0	342.8+2 $901\pm y$	$(31/2^+)$	230.8+Z 503±v	J1+2 (27/2 ⁺)
313 4 4	0.00 9	584 8+11	(31/2) I2+4	271 5+1	(27/2)
314.3 3		1005.7 + y	J+8	691.4+v	J+6
327.4 3	0.53 5	1069+v	$(33/2^+)$	741+v	$(29/2^+)$
332.7 <i>3</i>		875.5+z	J1+6	542.8+z	J1+4
348.0 <i>3</i>	1.01 11	1249+v	$(35/2^+)$	901+v	$(31/2^+)$
354.1 3		938.9+u	J2+6	584.8+u	J2+4
355.0 3	1 15 22	1360.7+y	J+10	1005.7+y	J+8 (22/2 ⁺)
300.4 3	1.15 23	1435+V 1248 2+7	$(3/2^{\circ})$	1069+V 875 5+7	$(33/2^{+})$
387.0.3	144	1240.2 ± 2 $1636\pm y$	$(39/2^+)$	$1249 \pm v$	$(35/2^+)$
393.3 4	1.1 /	1332.2+u	J2+8	938.9+u	J2+6
395.1 3		1755.8+y	J+12	1360.7+y	J+10
405.3 4	0.93 19	1840+v	$(41/2^+)$	1435+v	$(37/2^+)$
411.9 <i>3</i>		1660.1+z	J1+10	1248.2+z	J1+8
425.4 3	1.22 12	2062+v	$(43/2^+)$	1636+v	$(39/2^+)$
432.3 3		1764.5+u	J2+10	1332.2+u	J2+8
434.3 3		$2190.3 \pm y$ $2283 \pm y$	J+14 (45/2 ⁺)	1/33.8+y $1840\pm y$	J+12 ($A1/2^+$)
450 5 3		$2203 \pm \sqrt{2110.6 \pm z}$	(+3/2)	$1640 \pm v$ 1660 1+z	(+1/2) I1+10
163 7 3	$1.60^{@}$ 16	2525±v	$(47/2^+)$	$2062 \pm v$	$(13/2^+)$
469.9.3	1.00 10	$2323+\sqrt{2234.4+11}$	(47/2)	1764.5+u	(45/2)
473.1 3		2663.4+y	J+16	2190.3+y	J+14
479.7 <i>3</i>	0.72 17	2763+v	$(49/2^+)$	2283+v	$(45/2^+)$
488.1 <i>3</i>		2598.7+z	J1+14	2110.6+z	J1+12
501.1 3		3027+v	$(51/2^+)$	2525+v	$(47/2^+)$
507.3 3		2741.7+u	J2+14	2234.4+u	J2+12
516.0.3	1 11 17	31/4.0+y	J+18 (52/2 ⁺)	2663.4+y	J+16 (40/2 ⁺)
525 2 3	1.11 1/	3279 ± 0 3123 0±7	(33/2)	2703+V 2508 7±7	(49/2)
525.2 5	1 30 14	3564 + v	$(55/2^+)$	2398.7+2 3027+v	$(51/2^+)$
543.7 3	1.50 11	3285.4+u	J_{2+16}	2741.7+u	J_{2+14}
547.5 3		3721.5+y	J+20	3174.0+y	J+18
551.6 <i>3</i>	1.00 14	3830+v	$(57/2^+)$	3279+v	$(53/2^+)$
561.7 3		3685.6+z	J1+18	3123.9+z	J1+16
573.4 3	1.00 10	4137+v	$(59/2^+)$	3564+v	$(55/2^+)$
579.4 4		3864.8+u	J2+18	3285.4+u	J2+16
58653	0.84.17	4304.9+y	J+22 (61/2 ⁺)	3721.5+y	J+20 (57/2 ⁺)
596.9.3	0.04 17	$4417 \pm \sqrt{4282}$ 5+z	(01/2) 11+20	3685.6+z	(57/2) 11+18
608.8 3	0.96 10	4746+v	$(63/2^+)$	4137+v	$(59/2^+)$
614.5 4		4479.3+u	J2+20	3864.8+u	J2+18
618.4 <i>3</i>		4923.3+y	J+24	4304.9+y	J+22
620.3 <i>3</i>	0.81 13	5037+v	$(65/2^+)$	4417+v	$(61/2^+)$
631.8 3	1 00 00	4914.3+z	J1+22	4282.5+z	J1+20
643.8 3	1.09 22	5390+v	$(6'/2^+)$	4746+v	(63/2°) 12+20
049.3 4 653 1 3		5576 4±v	J∠+22 I±26	44/9.3+U 4073 3±17	J2+20 I+24
000.10		5570.4TY	J+20	<i>ту∠э.э</i> ⊤у	J 47

Continued on next page (footnotes at end of table)

					γ ⁽¹⁹³ Tl)	(continued)
E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
653.6 4	0.42 11	5691+v	$(69/2^+)$	5037+v	$(65/2^+)$	
666.4 <i>3</i>		5580.7+z	J1+24	4914.3+z	J1+22	
678.7 4	0.75 14	6069+v	$(71/2^+)$	5390+v	$(67/2^+)$	
684.2 <i>4</i>		5813.0+u	J2+24	5128.8+u	J2+22	
686.1 4	0.46 11	6377+v	$(73/2^+)$	5691+v	$(69/2^+)$	
686.7 <i>4</i>		6263.1+y	J+28	5576.4+y	J+26	
704.7 7		6285.4+z	J1+26	5580.7+z	J1+24	
713.2 5		6782+v	$(75/2^+)$	6069+v	$(71/2^+)$	
714.0 7		6977.1+y	J+30	6263.1+y	J+28	
718.7 5		7096+v	$(77/2^+)$	6377+v	$(73/2^+)$	
718.8 7		6531.8+u	J2+26	5813.0+u	J2+24	
735.0 10		7712.1+y	J+32	6977.1+y	J+30	
747.5 5		7529+v	$(79/2^+)$	6782+v	$(75/2^+)$	
748.0 10		7033.4+z	J1+28	6285.4+z	J1+26	
751.3 5		7847+v	$(81/2^+)$	7096+v	$(77/2^+)$	
781.9 5		8311+v	$(83/2^+)$	7529+v	$(79/2^+)$	
783.4 5		8630+v	$(85/2^+)$	7847+v	$(81/2^+)$	
^x 3046 [‡] 6						E_{γ} : Depopulating (21/2 ⁺) state at 206+V (1998Bo20).
^x 3113 [‡] 5						E_{γ} : Depopulating (19/2 ⁺) state at 98+V (1998Bo20).
^x 3134 [‡] 4						E_{γ} : Depopulating (17/2 ⁺) state at V (1998Bo20).

[†] From 1996Bo02 for γ 's in SD-1 and SD-2 bands; from 1998Bo32 for γ 's in SD-3, SD-4 and SD-5 bands. Interconnecting transitions from SD-1 and SD-2 bands to normal bands are from 1998Bo20. E γ 's for levels up to 2575 are from adopted gammas.

[‡] Identified by 1998Bo20 as out of the two signature partners of SD bands (SD Band 1 and 2) and proposed connection with members of normal deformed states of 1992Re08. The proposed connections do not fit with current data of 2016NdZZ, since the location of 1765.9 (2131+X) level (J^{π} =15/2⁺) changed to 1865.7 (2230.9+X) (J^{π} =21/2⁺). The evaluator placed the transition as unplaced with notes of the depopulating state.

[#] From 1990Fe07 (160 Gd(37 Cl,4n γ) E=167 MeV). Values are relative transition intensities within the band deduced from $\gamma\gamma$ data with gate on 500.7 γ for SD-1 and gate on 443.0 γ for SD-2. Intensity plots are given by 1998Bo32 for SD-3, SD-4 and SD-5 bands.

[@] Contains contribution from another unresolved transition in ¹⁹³Tl.

 $x \gamma$ ray not placed in level scheme.

Level Scheme

Intensities: Relative $I\gamma$ within each band

 $^{193}_{81}{\rm Tl}_{112}$

6

 $^{193}_{81}{\rm Tl}_{112}$

 $^{193}_{81}{\rm Tl}_{112}$

Band(C): SD-4 band						
J1+28		7033.4+z				
J1+26	748	6285.4+z				
J1+24	705	5580.7+z				
J1+22	666	4914.3+z				
J1+20	632	4282.5+z				
J1+18	597	3685.6+z				
J1+16	562	3123.9+z				
J1+14	525	2598.7+z				
J1+12	488	-2110.6+z				
<u>J1+10</u>	450	_1660.1+z				
<u>J1+8</u>	450	_1248.2+z				
J1+6	412	/875.5+z				
J1+4 \	373	_/542.8+z				
J1+2	333	250.8+z				
J1 ~	292	z				

Band(B): SD-3 band

J+32		7712.1+y
J+30	735	6977.1+y
J+28	714	6263.1+y
J+26	687	5576.4+y
J+24	653	³ 4923.3+y
J+22	618	4304.9+y
J+20	583	3721.5+y
<u>J+18</u> ∖	Ţ	_31/4.0+y
J+16	548	³ 2663.4+y
J+14	511	2190.3+y
J+12	1	_¥755.8+y
J+10	4/3	2_ ∦ 360.7+y
J+8	434	1005.7+v
I+6	395	
1+4	355	418.6+v
1.2	314	187 9±v
J+2	_ 273	<u> </u>
<u> </u>	- ¥	<u> </u>

Band(A): Sl α =+1	D-1 band /2	Band(a): SD-2 band α=-1/2		
(85/2+)	8630+v	(83/2 ⁺)	8311+v	
(81/2 ⁺) 783	7847+v	(79/2+) 782	752018	
(77/2 ⁺) 751	7096+v	(75/2)	/529+v	
(73/2 ⁺) ⁷¹⁹	6377+v	(75/2*)	6782+v	
(69/2 ⁺) 686	5691+v	(/1/2+) (79	<u>6069+v</u>	
(65/2+) 654	5037+v	$(67/2^+)$ $(63/2^+)$ 644	5390+v	
(61/2 ⁺) 620	4417+v	$(03/2^+)$ 609	4/40+V	
$\frac{(57/2^+)}{(53/2^+)}$ 586	$\frac{3830+v}{3279+v}$	$(55/2^+)$ 573	3564+v	
$(49/2^+)$ 552 $(45/2^+)$ 516	2763+v	$(51/2^+)$ (47/2 ⁺) 538	3027+v 2525+v	
(43/2) 510 (41/2) 480	<u>1840+v</u>	(43/2+) 501	<u>2062+v</u>	
(37/2) 443 (33/2) 443	$\frac{1435+v}{1069+v}$	(39/2) 464 (35/2) 425	$\frac{1636+v}{1249+v}$	
(29/2) (366) $(25/2)$ (366)	741+v	(31/2) 387 (27/2) 348	<u>901+v</u> <u>593+v</u>	
$\begin{array}{c c}(25/2 \\ \hline 327 \\ \hline (21/2 \\ \hline 288 \\ \hline \end{array}$	<u>454+v</u> <u>206+v</u>	(23/2 +) 308	<u>325+v</u>	
(17/2*)	v	(19/2) 227	─ <u>98+v</u>	

 $^{193}_{81}{\rm Tl}_{112}$

 $^{193}_{81}{\rm Tl}_{112}$