	His	tory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia	NDS 143, 1 (2017)	31-Mar-2017

Other: 1996SaZU.

2016NdZZ: ¹⁶⁰Gd(³⁷Cl,4n γ): Two experiments were performed with thin (1.0 mg/cm²) and thick (10 mg/cm²) ¹⁶⁰Gd targets with beam energies of 167 MeV and 162 MeV, respectively, at iThamba accelarator facility. γ rays were measured using 9 clover detectors (afrodite array). Four clover detectors were place (average location) at 135° and five clovers at 90° with respect to beam ditection, but the crystals are arranged in rings at 85° and 95°, 130° and 140°. Both thin and thick target data were used to build the level scheme, while the data from the thin target were used for γ -ray angular distribution and linear polarization measurements. Measured E γ , I γ , $\gamma\gamma$ coin, γ -ray angular distribution, linear polarization anisotropy, and lifetime measurement by Doppler Shift Attenuation Method. Also studied by ¹⁸¹Ta(¹⁸O,6n γ), E=105 MeV, reaction.

1992Re08: ¹⁶⁰Gd(³⁷Cl,4n γ); E=167 MeV; 12 Compton suppressed Ge(Li) detectors, 4π BGO array (ATLAS array), >97% ¹⁶⁰Gd target; measured E γ , I γ , $\gamma\gamma$ coin, DCO ratio (I(γ 1(146°), γ 2(34°))/I(γ 1(90°), γ 2(34°))).

1974Ne16: 181 Ta(16 O,4n γ), E(16 O)=79, 84, 89, 98 MeV; 184 W(14 N,5n γ), E(14 N)=82, 86, 89 MeV; also includes

¹⁹⁷Au(α ,8n γ), E(α)=93, 104, 116 MeV; measured E γ , I γ (Ge(Li)), $\gamma\gamma$ coin, γ -ray angular distributions, E(ce), Ice (mag spect, Si(Li)).

1996SaZU: ¹⁸¹Ta(¹⁶O,4n γ), E(¹⁶O)=84 MeV; measured $\gamma\gamma(\theta)$, $\gamma(ce)(\theta)$.

Level scheme from 2016NdZZ. Level scheme of 1992Re08 was revised and new transitions added by 2016NdZZ.

¹⁹³Tl Levels

E(level) ^a	Jπ b	T _{1/2}	Comments
0.0			
365.3 5			E(level): from Adopted Levels.
365.3+x ^T	9/2-		Additional information 1.
757.8+x [†] 4	$11/2^{-}$		
1081.7+x [†] 4	$13/2^{-}$		
1493.8+x 4	$13/2^{(-)}$		J^{π} : 13/2 ⁺ in 1992Re08. 1128.4 γ (2016NdZZ) to 9/2 ⁻ .
1512.8+x [†] 4	$15/2^{-}$		
1833.8+x [†] 5	$17/2^{-}$		
1900.2+x 5	$15/2^{-}$		
1929.7+x 5	17/2-		
1960.6+x 5	$15/2^{(-)}$		J^{π} : 1466.9 γ M1 to 13/2 ⁽⁻⁾ . 15/2 ⁺ in 1992Re08.
2008.1+x [@] 5	$17/2^{+}$	0.6 ns	J^{π} : 15/2 ⁺ in 1992Re03.
			$T_{1/2}$: 2016NdZZ estimate the value using Recoil Shadow Attenuation Method (RSAM) and list
2105 4 . @ (10/2+		$t_{1/2}=0.0$ hs, however, used the term method . The evaluator assumes han-me.
2105.4 + x = 0	19/2		
2231.5+x 7	21/2+		
2303.8+x ¹ 5	19/2-		
2393.4+x [@] 8	$23/2^+$		
2393.7+x 5	19/2-		
2452.0+x 8	23/2		
2506.3+x ⁺ 5	$21/2^{-}$		
$2576.2 + x^{T} 6$	$21/2^{-}$		
2591.3+x [‡] 6	$23/2^{-}$		
2672.5+x 8	25/2		
2687.3+x [‡] 7	$25/2^{-}$		
2710.2+x [@] 6	25/2+		

				¹⁹³ Tl Level	s (continu	ued)	
E(level) ^{<i>a</i>}	J ^π b	E(level) ^{<i>a</i>}	J ^π b	E(level) ^{<i>a</i>}	J ^π b	E(level) ^{<i>a</i>}	J ^π b
2798.3+x 9	27/2	3630.5+x 12	33/2	4306.8+x [‡] 9	35/2-	5039.5+x 14	41/2
2931.5+x 9	27/2	3747.1+x [@] 8	$31/2^{+}$	4307.6+x 10	35/2	5124.4+x [‡] 10	39/2-
2956.3+x [‡] 8	$27/2^{-}$	3767.2+x [#] 9	29/2-	4319.3+x [@] 11	37/2+	5125.0+x [@] 12	$43/2^{+}$
3026.9+x [@] 7	$27/2^+$	3767.3+x ^{&} 9	$31/2^{-}$	4335.2+x [#] 11	33/2-	5264.2+x ^{&}	$41/2^{-}$
3030.3+x 10	29/2	3849.8+x [‡] 9	33/2-	4525.7+x [@] 12	39/2+	5312.2+x [#] 13	39/2-
3087.5+x 11	29/2	3966.2+x [#] 10	31/2-	4532.6+x 11	37/2	5469.8+x [‡] 10	$41/2^{-}$
3164.3+x [‡] 8	$29/2^{-}$	3988.9+x ^{&} 10	33/2-	4553.4+x ^{&} 11	37/2-	5490.6+x [@] 12	$45/2^{+}$
$3407.0+x^{@}$ 7	$29/2^+$	4008.0+x [@] 8	$33/2^{+}$	4587.2+x [#] 11	35/2-	5853.8+x [‡] 11	$43/2^{-}$
3428.5+x 12	31/2	4114.6+x 8	33/2	4646.4+x [‡] 9	37/2-	5888.6+x [@] 13	$47/2^{+}$
3457.3+x ^{&} 7	$27/2^{-}$	4157.5+x [@] 10	$35/2^+$	4804.9+x [@] 12	$41/2^{+}$	6271.2+x [‡] <i>12</i>	$45/2^{-}$
3556.8+x [‡] 9	$31/2^{-}$	4227.4+x ^{&} 10	35/2-	4890.4+x ^{&} 11	39/2-		
3616.3+x ^{&} 8	29/2-	4262.5+x 13	37/2	4956.2+x [#] 12	37/2-		

 $(HI,xn\gamma)$

193TL Levels (continued)

2016NdZZ,1992Re08,1974Ne16 (continued)

[†] Band(A): Band 1.

[‡] Band(B): Band 2.

Band(C): Band 3.

[@] Band(D): Band 4.

& Band(E): Band 5.

^{*a*} From least-squares fitting to γ -ray energies, assuming $\Delta E \gamma = 0.5$ keV.

^{*b*} From 2016NdZZ based on γ -ray angular distribution ratio and polarization measurement. Also coincidence relationships, intensity balances, and increasing J with increasing E(level).

$\gamma(^{193}\text{Tl})$

Ε _γ @	Ι _γ @ <i>b</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. ^C	Comments
(15.1)		2591.3+x	23/2-	2576.2+x	21/2-		
47.5	19.82 5	2008.1+x	$17/2^{+}$	1960.6+x	$15/2^{(-)}$	D^d	Mult.: R _{ad} =0.86 20 (2016NdZZ).
(60.3)		1960.6+x	15/2(-)	1900.2+x	15/2-		E_{γ} : Unobserved transition that lies at the shoulder of the x-ray peak tentatively placed based on observed coincidence relations. Placement from level scheme (Fig 4.1). In Table 4.1 – from 2226 keV level.
85.0		2591.3+x	23/2-	2506.3+x	21/2-		E_{γ} : Placement from level scheme (Fig. 4.1). In Table 4.1 – from 1643 keV level – a misprint. Based on intensity balance at 2226.1 keV level, 2016NdZZ propose as an M1 transition.
96.0 ^a	5.150 8	2687.3+x	25/2-	2591.3+x	23/2-	D	Mult.: R _{ad} =0.87 <i>17</i> (2016NdZZ); DCO=1.24 <i>5</i> (1992Re08).
97.0	5.150 4	2105.4+x	19/2+	2008.1+x	17/2+	D	 E_γ: Confirmed coincidence relation with 735.9γ from 1128.4 keV level, however, changed placement based on coincidences with both 406.6γ and 466.9γ from 1535- and 1595-keV level, respectively. In 1992Re08, 96.4 keV 3, from 2056.4+x, level not present in 2016NdZZ. Mult : R_{vd}=0.8.3 (2016NdZZ): DCO=1.24.5 (1992Re08)
107 8 <mark>&</mark>	6 460 5	2008 1+x	$17/2^{+}$	1900.2+x	$15/2^{-}$	D^d	Mult: $R_{ad} = 0.87 \ I9 \ (2016 \ MzZ); \ DCO = 1.24 \ S \ (1992 \ MzCOS).$
107.0	0.100 5	2000.11A	1,72	1900.217	10/2	Ð	(1992Re08).

γ ⁽¹⁹³Tl) (continued)</sup>

$E_{\gamma}^{@}$	$I_{\gamma}^{\textcircled{0}{b}}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. ^C	Comments
111.0	0.9200 21	2798.3+x	27/2	2687.3+x	25/2-	D	Mult.: R _{ad} =0.78 12 (2016NdZZ).
112.5	0.9400 18	2506.3+x	$21/2^{-}$	2393.7+x	$19/2^{-}$	d	
125.9 ^a	9.260 7	2231.5+x	21/2+	2105.4+x	19/2+	D	Mult.: R _{ad} =0.81 21 (2016NdZZ); DCO=0.660 19 (1992Re08).
149.5 ^a	9.020 4	4157.5+x	35/2+	4008.0+x	33/2+	D	Mult.: R _{ad} =0.74 <i>13</i> (2016NdZZ); DCO=0.664 <i>16</i> (1992Re08).
151.0	1.1100 21	3767.3+x	31/2-	3616.3+x	29/2-	D	Mult.: R _{ad} =0.76 19 (2016NdZZ).
156.0 ^{‡a}	2.150 3	3087.5+x	29/2	2931.5+x	27/2	D	Mult.: R _{ad} =0.8 <i>3</i> (2016NdZZ); DCO=0.69 <i>3</i> (1992Re08).
159.0	0.7400 15	3616.3+x	29/2-	3457.3+x	27/2-	D	Mult.: R_{ad} =0.74 21 (2016NdZZ)Expected to be a magnetic dipole transition (2016NdZZ) from 159.0 γ and 929.0 γ intensity comparisons of this level.
161.8	10.260 14	2393.4+x	$23/2^+$	2231.5+x	$21/2^+$	_	
161.8 ^{<i>a</i>}	5.780 5	4319.3+x	37/2+	4157.5+x	35/2+	D	Mult.: $R_{ad} = 0.87 \ 21 \ (2016 NdZZ)$.
193.0	1.370 2	4307.6+x	35/2	4114.6+x	33/2	D	Mult.: $R_{ad} = 0.73 \ 18 \ (2016 \text{NdZZ}).$
199.0	3.110 3	3966.2+x	31/2	3/6/.2+x	29/2	(M1)	Mult.: R_{ad} =0.79 11. Sign from intensity balance (2016NdZZ). DCO=0.69 3 (1992Re08).
202.5	4.060 7	2506.3+x	21/2-	2303.8+x	19/2-	D	Mult.: R _{ad} =0.90 <i>14</i> (2016NdZZ); DCO=0.90 <i>5</i> (1992Re08).
206.4 ^{<i>a</i>}	5.860 6	4525.7+x	39/2+	4319.3+x	37/2+	D	Mult.: R _{ad} =0.85 <i>14</i> (2016NdZZ); DCO=0.816 <i>16</i> (1992Re08).
208.0 ^{<i>a</i>}	9.030 18	3164.3+x	29/2-	2956.3+x	27/2-	D	Mult.: R _{ad} =0.82 <i>12</i> (2016NdZZ); DCO=0.72 <i>4</i> (1992Re08).
210.4	1.500 25	3767.2+x	$29/2^{-}$	3556.8+x	31/2-	D	Mult.: R _{ad} =0.7 3 (2016NdZZ).
220.5 ^{ed}	3.90 ^e 9	2452.0+x	23/2	2231.5+x	21/2+	D	Mult.: R _{ad} =0.8 <i>3</i> (2016NdZZ); DCO=0.696 <i>20</i> for doublet (1992Re08).
220.5 ^{ea‡}	3.90 ^e 9	2672.5+x	25/2	2452.0+x	23/2	D	Mult.: R _{ad} =0.8 <i>3</i> (2016NdZZ); DCO=0.696 <i>20</i> for doublet (1992Re08).
221.6	2.510 5	3988.9+x	33/2-	3767.3+x	31/2-	M1	Mult.: $R_{ad} = 0.83 \ 8$, $A_{pol} = -0.17 \ 4 \ (2016 \text{NdZZ})$.
225.0 [#]	1.3200 15	4532.6+x	37/2	4307.6+x	35/2	D	Mult.: R _{ad} =0.87 8 (2016NdZZ).
232.0 ^{†a}	1.390 4	3030.3+x	29/2	2798.3+x	27/2	D	Mult.: R _{ad} =0.9 <i>3</i> (2016NdZZ); DCO=0.95 <i>3</i> (1992Re08).
238.5 ^{<i>a</i>}	2.510 3	4227.4+x	35/2-	3988.9+x	33/2-	M1	Mult.: R _{ad} =0.77 <i>12</i> , A _{pol} =-0.06 <i>4</i> (2016NdZZ); DCO=0.69 <i>3</i> (1992Re08).
252.0 ^a	0.890 3	4587.2+x	35/2-	4335.2+x	33/2-	D	Mult.: R _{ad} =0.85 24 (2016NdZZ); DCO=0.54 6 (1992Re08).
259.0 ^{‡a}	9.480 8	2931.5+x	27/2	2672.5+x	25/2	D	Mult.: R _{ad} =0.70 <i>16</i> (2016NdZZ); DCO=0.75 <i>3</i> (1992Re08).
260.9 ^a	9.10 12	4008.0+x	33/2+	3747.1+x	31/2+	M1	Mult.: R _{ad} =0.72 20, A _{pol} =-0.10 4 (2016NdZZ); DCO=0.862 20 (1992Re08).
269.0 ^a	17.870 <i>12</i>	2956.3+x	27/2-	2687.3+x	25/2-	M1	Mult.: $R_{ad}=0.78$ 9, $A_{pol}=-0.04$ 3 (2016NdZZ); DCO=0.884 24 (1992Re08); $A_2=-0.49$ 15, $A_4=-0.02$ 15 (1974Ne16).
272.4 ^{&}	3.150 5	2576.2+x	21/2-	2303.8+x	19/2-	D	Mult.: R _{ad} =0.81 21 (2016NdZZ); DCO=0.95 3 (1992Re08).
279.2 ^a	5.190 8	4804.9+x	41/2+	4525.7+x	39/2+	M1	Mult.: R _{ad} =0.77 7, A _{pol} =-0.06 3 (2016NdZZ); DCO=0.789 16 (1992Re08).
287.5	8.820 15	2591.3+x	$23/2^{-}$	2303.8+x	19/2-	(Q)	Mult.: R _{ad} =1.12 8 (2016NdZZ).
293.0 ^a	5.490 7	3849.8+x	33/2-	3556.8+x	31/2-	D	Mult.: R _{ad} =0.81 <i>10</i> (2016NdZZ); DCO=0.67 <i>5</i> (1992Re08).
316.7 ^{ea}	8.240 ^e 7	2710.2+x	25/2+	2393.4+x	23/2+	D	Mult.: R _{ad} =0.73 8 (2016NdZZ); DCO=0.435 12 (1992Re08).

Continued on next page (footnotes at end of table)

 $^{193}_{81}\text{Tl}_{112}\text{-}4$

(HI,xnγ) 2016NdZZ,1992Re08,1974Ne16 (continued)

γ ⁽¹⁹³Tl) (continued)</sup>

$E_{\gamma}^{@}$	$I_{\gamma}^{@b}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^C	δ	Comments
316.7 ^{ea}	3.670 ^e 4	3026.9+x	$27/2^+$	2710.2+x	25/2+	D		Mult.: R _{ad} =0.7 4 (2016NdZZ);
320.1	5.160 7	5125.0+x	43/2+	4804.9+x	41/2+	D		DCO=0.669 12 (1992Re08). E_{γ} : Placement from level scheme (Fig. 4.1). In table 4.1 – placement from 2661 keV level. Mult.: R_{ad} =0.76 9 (2016NdZZ).
321.0	13.040 7	1833.8+x	17/2-	1512.8+x	15/2-	D		Mult.: R _{ad} =0.85 <i>12</i> (2016NdZZ); DCO=0.84 <i>4</i> (1992Re08).
323.9 ^{&}	31.28 6	1081.7+x	13/2-	757.8+x	11/2-	M1+E2	0.6 +4-5	Mult., δ : From α (K)exp=0.21 5 (1974Ne16); R _{ad} =0.86 9 (2016NdZZ); DCO=0.791 <i>11</i> (1992Re08); A ₂ =-0.74 2, A ₄ =+0.02 2 (1974Ne16) for unresolved 323.8 γ +320.9 γ .
326.0 ^{<i>a</i>}	3.280 6	4553.4+x	37/2-	4227.4+x	35/2-	D		Mult.: R _{ad} =0.74 <i>9</i> (2016NdZZ); DCO=0.71 <i>3</i> (1992Re08).
337.0 ^{<i>a</i>}	1.440 3	4890.4+x	39/2-	4553.4+x	37/2-	D		E _{γ} : Placement from level scheme (Fig. 4.1). In Table 4.1 – from 4749 keV level. Mult.: R _{ad} =0.68 <i>19</i> (2016NdZZ); DCO=0.60.3 (1002Pe08)
339.6 ^{<i>a</i>}	2.270 5	4646.4+x	37/2-	4306.8+x	35/2-	M1		Mult.: R_{ad} =0.74 <i>10</i> , A_{pol} =-0.06 <i>4</i> (2016NdZZ); DCO=0.70 <i>6</i> (1992Re08). E_{γ} : From level scheme (Fig 4.1). In Table 4.1 – from 4182 keV level, which appears to be a misprint of 4281.
340.1 ^a	7.40 6	3747.1+x	31/2+	3407.0+x	29/2+	M1		Mult.: R _{ad} =0.72 <i>13</i> , A _{pol} =-0.05 <i>3</i> (2016NdZZ); DCO=0.70 <i>6</i> (1992Re08).
341.0 [‡]	5.710 5	3428.5+x	31/2	3087.5+x	29/2	D		Mult.: R _{ad} =0.75 21 (2016NdZZ).
345.4 ^a	1.300 22	5469.8+x	41/2-	5124.4+x	39/2-	M1		Mult.: R _{ad} =0.76 25, A _{pol} =-0.10 4 (2016NdZZ); DCO=0.60 4 (1992Re08).
356.0 ^a	1.1200 13	5312.2+x	39/2-	4956.2+x	37/2-	D		Mult.: R _{ad} =0.77 23 (2016NdZZ); DCO=0.65 5 (1992Re08).
365.3		365.3		0.0				E_{γ} : from 1974Ne16. I_{γ} : found to be duty cycle dependent.
365.6 ^a	1.90 4	5490.6+x	45/2+	5125.0+x	43/2+	D		Mult.: R _{ad} =0.74 24 (2016NdZZ); DCO=1.254 24 (1992Re08) not consistent with D.
367.5	1.840 4	4114.6+x	33/2	3747.1+x	$31/2^{+}$	D		Mult.: R _{ad} =0.77 21 (2016NdZZ).
369.0 ^{fa}	2.370 ^f 4	4335.2+x	$33/2^{-}$	3966.2+x	$31/2^{-}$	D		Mult.: R _{ad} =0.70 12 (2016NdZZ).
369.0 ^{fa}	2.0400 ^{<i>f</i>} 21	4956.2+x	37/2-	4587.2+x	35/2-	D		Mult.: R _{ad} =0.70 <i>12</i> (2016NdZZ); DCO=0.61 <i>4</i> (1992Re08).
374.0 <mark>8</mark>	0.2600 5	5264.2+x	$41/2^{-}$	4890.4+x	39/2-	D		Mult.: R _{ad} =0.75 23 (2016NdZZ).
380.1 ^a	8.69 1	3407.0+x	29/2+	3026.9+x	27/2+	M1		Mult.: R_{ad} =0.69 12, A_{pol} =-0.05 3 (2016NdZZ); DCO=0.721 24 (1992Re08).
384.0 ^a	1.430 4	5853.8+x	43/2-	5469.8+x	41/2-	D		Mult.: R _{ad} =0.8 <i>3</i> (2016NdZZ); DCO=0.70 <i>8</i> (1992Re08).
392.5 <mark>e&</mark>	100 ^e 1	757.8+x	$11/2^{-}$	365.3+x	9/2-	M1+E2	-0.59 14	Mult.: α (K)exp=0.110 25 (1974Ne16);

Continued on next page (footnotes at end of table)

γ ⁽¹⁹³Tl) (continued)</sup>

$E_{\gamma}^{@}$	$I_{\gamma}^{\textcircled{@}b}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. ^C	Comments
							DCO=0.791 <i>11</i> (1992Re08); A ₂ =-0.74 2, A ₄ =+0.02 2 (1974Ne16); R _{ad} =0.91 8, A _{pol} =-0.019 29 (2016NdZZ).
392.5 ^{ea}	13.820 ^e 17	3556.8+x	31/2-	3164.3+x	29/2-	M1	Mult.: R_{ad} =0.78 12, A_{pol} =-0.08 4 (2016NdZZ).
398.0	2.540 4	5888.6+x	$47/2^+$	5490.6+x	$45/2^+$	D	Mult.: $R_{ad}=0.64 \ 11 \ (2016NdZZ).$
400.2~	29.70 15	1900.2+x	15/2	1493.8+X	13/20	IVI I	Mult.: $R_{ad}=0.85$ 14, $A_{pol}=-0.07$ 5 (2016NdZZ); α (K)exp=0.12 3, K/L=4.6 8 (1974Ne16); DCO=0.710 16 (1992Re08); A_2 =-0.68 3, A_4 =+0.02 3 (1974Ne16).
412.0 ^{&}	6.150 6	1493.8+x	13/2 ⁽⁻⁾	1081.7+x	13/2-	D+Q	Mult.: R _{ad} =1.12 8 (2016NdZZ), DCO=1.37 3 indicates dominant Q (1992Re08).
416.9 ^{<i>f</i>} &	2.480 ^{<i>f</i>} 8	1929.7+x	17/2-	1512.8+x	15/2-	D	 E_γ,I_γ: 416.9 is a doublet of 416.9γ and 417.4γ from 6271.2+x keV level. Undivided γ-ray intensity listed. Mult.: DCO=0.53 4 (1992Re08).
417.4 ^{<i>fa</i>}	2.480 ^{<i>f</i>} 8	6271.2+x	45/2-	5853.8+x	43/2-	D	E _{γ} ,I _{γ} : Doublet of 417.4 γ and 416.9 γ from 1929.7+x keV level. Undivided γ -ray intensity listed. Q.
431.2 ^{&}	17.910 <i>13</i>	1512.8+x	15/2-	1081.7+x	13/2-	M1	Mult.: R_{ad} =0.79 8, A_{pol} =-0.04 3 (2016NdZZ); α (K)exp=0.12 3, K/L=4.3 8 (1974Ne16); DCO=0.81 3 (1992Re08); A_2 =-0.51 8, A_4 =-0.16 8 (1974Ne16).
441.0	1.3100 15	2672.5+x	25/2	2231.5+x	21/2+	(Q)	Mult.: R_{ad} =1.16 20 (2016NdZZ). E _y : Placement from level scheme (Fig. 4.1). In Table 4.1 – from 1128 keV level – is a misprint.
457.0 ^a	2.980 7	4306.8+x	35/2-	3849.8+x	33/2-	M1	Mult.: $R_{ad}=0.7 \ 3$, $A_{pol}=-0.028 \ 13 \ (2016NdZZ)$; DCO=0.81 4 (1992Re08).
460.1	1.790 5	4227.4+x	35/2-	3767.3+x	31/2-	Q	Mult.: $R_{ad} = 1.2 4$ (2016NdZZ).
464.1°	6.10 12	2393.7+x	19/2-	1929.7+x	17/2-	D	Mult.: R _{ad} =0.73 <i>17</i> (2016NdZZ); DCO=0.90 <i>4</i> (1992Re08).
466.9 ^{&}	14.410 <i>12</i>	1960.6+x	15/2(-)	1493.8+x	13/2(-)	M1	Mult.: R_{ad} =0.73 <i>16</i> , A_{pol} =-0.05 <i>3</i> (2016NdZZ); α (K)exp=0.090 <i>25</i> (1974Ne16); DCO=0.729 <i>14</i> (1992Re08).
470.0 ^{&}	6.670 7	2303.8+x	19/2-	1833.8+x	17/2-	D	Mult.: R _{ad} =0.82 <i>17</i> (2016NdZZ); DCO=0.79 <i>3</i> (1992Re08).
477.0 ^a	4.450 6	3164.3+x	29/2-	2687.3+x	25/2-	Q	Mult.: R _{ad} =1.3 <i>3</i> (2016NdZZ); DCO=1.346 22 (1992Re08).
478.0 ^a	2.220 4	5124.4+x	39/2-	4646.4+x	37/2-	D	Mult.: R _{ad} =0.83 8 (2016NdZZ); DCO=0.89 3 (1992Re08).
478.5	2.670 7	2710.2+x	25/2+	2231.5+x	$21/2^+$	Q	Mult.: R _{ad} =1.2 3 (2016NdZZ).
485.6 ^a	0.700 18	4804.9+x	41/2+	4319.3+x	37/2+	Q	Mult.: R_{ad} =1.25 <i>13</i> (2016NdZZ); DCO=1.33 <i>4</i> (1992Re08).
495.2 ^{&}	6.01 <i>I</i>	2008.1+x	17/2+	1512.8+x	15/2-	E1	Mult.: R _{ad} =0.78 <i>17</i> , A _{pol} =0.03 <i>3</i> (2016NdZZ); DCO=1.51 <i>3</i> (1992Re08).
543.0 ^{†a}	1.790 5	3630.5+x	33/2	3087.5+x	29/2	Q	Mult.: R _{ad} =1.17 6 (2016NdZZ); DCO=1.462 20 (1992Re08).
599.3 ^a	6.080 14	5125.0+x	43/2+	4525.7+x	39/2+	Q	 E_γ,I_γ: Doublet of 599.3γ and 601.0γ from 3642 keV level. Undivided γ-ray intensity listed. Mult.: DCO=1.29 4 (1992Re08).
600.5	2.980 11	3556.8+x	31/2-	2956.3+x	27/2-		E_{γ} : From level scheme (Fig 4.1). In Table 4.1 – from 3191 keV level, which appears to be the same with this level.
601.0 ^a	6.080 14	4008.0+x	33/2+	3407.0+x	29/2+	Q	$E_{\gamma},I_{\gamma};$ Doublet of 601.0 γ and 599.3 γ from 4759
				Continued	on next p	age (footn	otes at end of table)

γ ⁽¹⁹³Tl) (continued)</sup>

$E_{\gamma}^{@}$	$I_{\gamma}^{\textcircled{0}}b$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^π	Mult. ^C	Comments
							keV level. Undivided γ -ray intensity listed.
621.0 ^a	0.9100 24	4587.2+x	35/2-	3966.2+x	31/2-	Q	Mult.: $DCO=1.40\ 3\ (1992Re08)$. Mult.: $R_{ad}=1.41\ 11\ (2016NdZZ)$; $DCO=1.40\ 3\ (1992Re08)$
632.0 ^a	1.760 3	4262.5+x	37/2	3630.5+x	33/2	Q	Mult.: R_{ad} =1.2 3 (2016NdZZ); DCO=1.599 22 (1992Re08)
633.4 ^a	10.460 11	3026.9+x	27/2+	2393.4+x	$23/2^+$	E2	Mult.: R_{ad} =1.33 11, A_{pol} =0.04 4; DCO=1.599 22 (1992Re08)
663.0 ^a	0.730 2	4890.4+x	39/2-	4227.4+x	35/2-	Q	Mult.: R_{ad} =1.31 20 (2016NdZZ); DCO=1.36 5 (1992Re08).
672.5 <mark>&</mark>	39.19 4	2506.3+x	$21/2^{-}$	1833.8+x	17/2-	E2	Mult.: R_{ad} =1.21 15, A_{pol} =0.04 3 (2016NdZZ); DCO=1.347 15 (1992Re08)
685.5 ^a	4.67 1	3849.8+x	33/2-	3164.3+x	29/2-	E2	Mult.: R_{ad} =1.25 <i>11</i> , A_{pol} =0.07 <i>4</i> (2016NdZZ); DCO=1.353 <i>21</i> (1992Re08).
685.7	0.4900 8	5490.6+x	$45/2^{+}$	4804.9+x	$41/2^{+}$	0	Mult.: $R_{ad} = 1.25 \ 2I \ (2016 \text{NdZZ}).$
696.8 ^a	7.680 5	3407.0+x	29/2+	2710.2+x	25/2+	(E2)	Mult.: R _{ad} =1.15 8, A _{pol} =0.039 25 (2016NdZZ); DCO=1.278 24 (1992Re08).
707.7	4.150 9	4114.6+x	33/2	3407.0+x	$29/2^+$	Q	Mult.: R _{ad} =1.33 18 (2016NdZZ).
716.4 ^{&}	34.88 6	1081.7+x	13/2-	365.3+x	9/2-	E2	Mult.: R_{ad} =1.29 23, A_{pol} =0.06 3 (2016NdZZ); α (K)exp=0.0075 2 (1974Ne16); DCO=1.291 16 (1992Re08); A_2 =+0.32 5, A_4 =-0.02 5 (1974Ne16).
720.2 ^a	10.570 8	3747.1+x	31/2+	3026.9+x	27/2+	E2	Mult.: R _{ad} =1.33 5, A _{pol} =0.06 4 (2016NdZZ); DCO=1.406 18 (1992Re08).
729.4 ^{ag}	0.3100 11	5853.8+x	43/2-	5124.4+x	39/2-	Q	Mult.: DCO=1.30 3 (1992Re08).
735.9 ^{&}	52.34 6	1493.8+x	13/2 ⁽⁻⁾	757.8+x	11/2-	D	Mult.: R_{ad} =0.72 <i>13</i> , A_{pol} =0.001 <i>34</i> (2016NdZZ); α (K)exp=0.0060 <i>15</i> (1974Ne16), theory: α (K)(E1)=0.00354, α (K)(M1)=0.0299; DCO=0.704 <i>23</i> (1992Re08); A_2 =-0.19 <i>4</i> , A_4 =0.04 <i>4</i> (1974Ne16).
742.4 ^{&}	12.920 13	2576.2+x	21/2-	1833.8+x	17/2-	Q	Mult.: R_{ad} =1.29 25 (2016NdZZ); α (K)exp=0.030 15 (1974Ne16); theory: α (K)(E2)=0.00349, α (K)(M1)=0.0292; DCO=1.191 19 (1992Re08); A ₂ =+0.24 17, A ₄ =-0.05 17 (1974Ne16). In band transition.
750.0	1.770 6	4306.8+x	35/2-	3556.8+x	$31/2^{-}$	Q	Mult.: R _{ad} =1.21 14 (2016NdZZ).
752.2 ^{&}	41.65 7	1833.8+x	17/2-	1081.7+x	13/2-	E2	Mult.: α (K)exp=0.013 4 (1974Ne16); DCO=1.640 15 (1992Re08); R _{ad} =1.2 3 (2016NdZZ).
755.1 ^{&}	24.37 5	1512.8+x	15/2-	757.8+x	11/2-	E2	Mult.: R_{ad} =1.25 <i>12</i> (2016NdZZ); α (K)exp=0.011 <i>4</i> (1974Ne16); DCO=1.219 <i>18</i> (1992Re08). theory: α (K)(E2)=0.00867.
770.0	1.460 <i>3</i>	3457.3+x	$27/2^{-}$	2687.3+x	$25/2^{-}$	M1	Mult.: $R_{ad}=0.8 4$, $A_{pol}=-0.05 4$ (2016NdZZ).
777.0 ^{†a}	1.950 <i>3</i>	5039.5+x	41/2	4262.5+x	37/2	Q	Mult.: R _{ad} =1.3 3 (2016NdZZ); DCO=1.39 3 (1992Re08).
791.0 <mark>&</mark>	10.750 8	2303.8+x	19/2-	1512.8+x	15/2-	(E2)	Mult.: R _{ad} =1.13 <i>11</i> , A _{pol} =0.038 <i>25</i> (2016NdZZ); DCO=1.488 <i>18</i> (1992Re08).
796.6 ^a	3.330 6	4646.4+x	37/2-	3849.8+x	33/2-	(E2)	Mult.: R _{ad} =1.15 8, A _{pol} =0.13 5 (2016NdZZ); DCO=1.382 21 (1992Re08).
801.4 ^{ag}	0.7200 17	6271.2+x	$45/2^{-}$	5469.8+x	$41/2^{-}$		Mult.: DCO=1.30 7 (1992Re08).
810.9	2.280 5	3767.2+x	$29/2^{-}$	2956.3+x	$27/2^{-}$	M1	Mult.: R _{ad} =0.53 13, A _{pol} =-0.014 4 (2016NdZZ).
817.6 ^a	1.2100 18	5124.4+x	39/2-	4306.8+x	35/2-	Q	Mult.: R _{ad} =1.30 <i>11</i> (2016NdZZ); DCO=1.90 <i>8</i> (1992Re08).
818.6	1.810 4	1900.2+x	$15/2^{-}$	1081.7+x	$13/2^{-}$	D	Mult.: R _{ad} =0.78 8 (2016NdZZ).
823.4 ^{<i>a</i>}	1.00 3	5469.8+x	41/2-	4646.4+x	37/2-	Q	Mult.: R _{ad} =1.32 20 (2016NdZZ); DCO=1.699 23 (1992Re08).

Continued on next page (footnotes at end of table)

					<u>γ(193</u> Τ	Tl) (contin	ued)
Ε _γ @	$I_{\gamma}^{@b}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. ^C	Comments
848.1 ^{&}	7.170 14	1929.7+x	17/2-	1081.7+x	13/2-	Q	Mult.: R _{ad} =1.131 21 (2016NdZZ); DCO=1.201 23 (1992Re08).
866.0	0.9100 23	3457.3+x	$27/2^{-}$	2591.3+x	$23/2^{-}$	(E2)	Mult.: R _{ad} =1.16 25, A _{pol} =0.09 5 (2016NdZZ).
878.9	1.4300 24	1960.6+x	$15/2^{(-)}$	1081.7+x	$13/2^{-}$	D	Mult.: R _{ad} =0.86 15 (2016NdZZ).
881.0	0.8800 12	2393.7+x	19/2-	1512.8+x	$15/2^{-}$	Q	Mult.: R _{ad} =1.23 22 (2016NdZZ).
929.0	1.0400 24	3616.3+x	29/2-	2687.3+x	$25/2^{-}$	Q	Mult.: R _{ad} =1.2 3 (2016NdZZ).
1128.4	1.600 21	1493.8+x	$13/2^{(-)}$	365.3+x	9/2-	Q	Mult.: R _{ad} =1.34 8 (2016NdZZ).

[†] Member of a sequence.

[‡] Member of a sequence.

[#] Member of a sequence.

^(a) From 2016NdZZ, except otherwise noted. 2016NdZZ did not report uncertainty of γ -ray energy. Assuming a 0.5 keV uncertainty, the values are in good agreement with those of 1992Re08.

[&] A comparable γ ray from the same level also reported in 1992Re08.

^{*a*} A comparable γ -ray reported in 1992Re08, but level not present in 2016NdZZ.

^b From 2016NdZZ, except otherwise noted.

^{*c*} Based on α (K)exp, K/L, $\gamma(\theta)$ results (1974Ne16), DCO (1992Re08), and γ -ray angular distribution ratio, polarization measurement (2016NdZZ). The levels up to 13/2⁺ and 15/2⁻ were considered established by 1974Ne16. To obtain the α (K)exp, the photon and ce-spectra of 1974Ne16 were calibrated through α (K) (E3 theory) for 382.8 γ in ¹⁹⁹Tl. The DCO ratio is defined as I($\gamma_1(146^\circ), \gamma_2(34^\circ)$)/I($\gamma_1(90^\circ), \gamma_2(34^\circ)$) which results in DCO=1.4 for Δ J=2 Q and Δ J=0 D, and DCO=0.7 for Δ J=1, D. 2016NdZZ measured γ -ray angular distribution ratio R_{ad}=I $\gamma(135^\circ)$ /I $\gamma(90^\circ)$ and linear polarization anisotropy measurements. Expected R_{ad}=0.85 for pure stretched dipole and R_{ad}=1.35 for pure stretched quadrupole. For parity – a positive sign of polarization anisotropy A_{pol} for stretched electric transitions and a negative sign for stretched magnetic transitions was expected.

^d 2016NdZZ argue the transition expected to be electric dipole based on intensity comparison with following transitons of 406.6 γ , 818.6 γ , 466.9 γ , 878.9 γ and without any additional feeding to 15/2⁻ state at 1535.0 keV level.

^{*e*} Multiply placed with undivided intensity.

^f Multiply placed with intensity suitably divided.

^g Placement of transition in the level scheme is uncertain.

 $^{193}_{81}{\rm Tl}_{112}$

 $^{193}_{81}{\rm Tl}_{112}$

 $^{193}_{81}{\rm Tl}_{112}$