⁹Be(²⁰⁸Pb,Xγ) 2011St21,2009Al30,2005Ca02

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	M. Shamsuzzoha Basunia	NDS 143, 1 (2017)	31-Mar-2017							

2011St21: ¹⁹³Re nuclide formed by in-flight fragmentation of ²⁰⁸Pb beam at 1 GeV/nucleon from the GSI UNILAC and SIS-18 accelerator complex. Target thickness=2.526 g/cm², backed by ⁹³Nb foil of thickness=0.223 g/cm². Fragments identified in flight by the Fragment Separator (FRS) operated in achromatic mode based on time-of-flight, B ρ and energy loss. Transmitted ions slowed in Al degraders and stopped in a plastic catcher. The stopper was surrounded by the RISING γ -ray spectrometer. Measured E γ , I γ , delayed γ rays, isomer lifetime, x-ray.

2009Al30,2009Al16: RISING array of 15 seven-element Ge cluster detectors used for γ ray detection. Measured isomer half-life.

2005Ca02: Nuclide was produced by fragmentation of ²⁰⁸Pb beam (E=208GeV) (2005Ca02) on beryllium target. ¹⁹³Re was identified with the GSI Fragment Separator; delayed γ events were recorded by 4 clover composite Ge detectors. 2005Ca02 also observed delayed Re K α x ray and K β x ray, with intensities 1.05 8 and 0.29 6 relative to γ 146.1 keV assigned to the decay of the isomeric level.

x-ray	v energy	II II	ntensity (relative and arbitrary) (2005Ca02)
60.6 2 989 58 69.5 3 247 35			989 <i>58</i> 247 <i>35</i>
			¹⁹³ Re Levels
E(level)	J^{π}	T _{1/2}	Comments
0+x 146.1+x <i>3</i>	$\overline{(5/2^+)}$ (9/2 ⁻)	69 µs 8	T _{1/2} : Weighted average of 65 μ s 9 (2011St21) and 72 μ s 8 (2009Al30, 2009Al16). Uncertainty lower input value. Other: 75 μ s +450–40, upper-limit corresponds to 100% isomeric formation ratio (2005Ca02). Experimental isomeric state population ratio=16% +4–5 (2011St21).

[†] Proposed in 2011St21, based on systematics of ^{187,189}Re g.s., low lying 9/2⁻ state, and BCS calculations.

$\gamma(^{193}\text{Re})$

Eγ	Iγ	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	Comments
146.1 3	135 26	146.1+x	(9/2 ⁻)	0+x	(5/2+)	[M2]	 E_γ,I_γ: From 2005Ca02. Other: 145.2 keV and Iγ=100 <i>11</i> (2011St21). 2011St21 propose that 145-keV transition connects the (9/2⁻) and (5/2⁺) states. The intensity (not listed) of the observed x rays is in agreement for this connection, noted in 2011St21. Mult.: Proposed in 2011St21. 2005Ca02 deduced hindrance factors for isomeric transition: HF=70 for M2 and 1000 for E2 (2005Ca02).

⁹Be(²⁰⁸Pb,Xγ) 2011St21,2009Al30,2005Ca02

