195Pt(p,t) 1980Ro07

History								
Type	Author	Citation	Literature Cutoff Date					
Full Evaluation	M. Shamsuzzoha Basunia	NDS 143, 1 (2017)	31-Mar-2017					

 $J^{\pi}(^{195}Pt)=1/2^{-}$.

 $E(p)=25 \text{ MeV}, \theta=5^{\circ} \text{ to } 55^{\circ}; \text{ Pt metal targets enriched to } 97.28\% \text{ in } ^{195}\text{Pt; measured } E(\text{level}) \text{ (mag spect, FWHM=16-18 keV)},$ differential cross sections, angular distributions.

¹⁹³Pt Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	L‡	$\Sigma \ \sigma(\theta)^{\text{#}}$	Comments
0.0	$1/2^{-}$		0	100	
1.6 [@]				12 a	
14.3 [@]				6 <mark>a</mark>	
117 4				1.9	
149.8? [@] &	13/2+	4.33 d <i>3</i>			J^{π} , $T_{1/2}$: From Adopted Levels.
188 <i>4</i>	3/2-		2	2.7	1/2
232 4	$(5/2)^{-}$		2 2	4.9	
271 <i>4</i>	$3/2^{-}$		2	1.9	
307? 4				0.15	
340 <i>4</i>				2	
425 4				4.6	
462 4			_	2	
492 <i>4</i>	$(5/2)^{-}$		2	0.7	
531 4				1.8	
597 <i>4</i> 622 <i>4</i>				4.2 0.9	
642 <i>4</i>				1.2	
701 4				0.5	
728 4				1.5	
753 4				3.3	
828 <i>4</i>				2.1	
841 <i>4</i>	$3/2^{-}$		2	4.3	
922 <i>4</i>	3/2-		2 2	3	
984 <i>4</i>				1.1	
1053 8				2.5	
1091 8				1	
1182 8	$3/2^{-}$		2	1	
1217 8				1.9	
1243 8				0.8	
1265 8				2.9	
1333 8 1364 8				2.8 1.9	
1425 8				2	
1423 8	1/2-		0	3	
1534 8	1/2-		0	1.4	
1557 8	1/2-		0	3.5	
1585 8	,		-	0.6	
1610 8				0.9	

[†] From 1980Ro07; deduced from angular distributions and cross sections, relative to those for corresponding levels in ¹⁹⁴Pt(p,d), (d,t), except otherwise noted.

[‡] Inferred from angular distributions.

[#] Relative summed cross-sections for the seven angles between 5° and 55° observed in the experiment.

® Rounded off value from Adopted Levels; level not well resolved in ¹⁹⁵Pt(p,t).

 195 Pt(p,t) 1980Ro07 (continued)

¹⁹³Pt Levels (continued)

[&]amp; Population uncertain; peak overlaps that for 192 Pt g.s. from contaminant. a Estimated from spectrum at θ =15° assuming the angular distribution observed for J^{π}=5/2 $^-$ states.